Adaptive Urban Planning: A Hybrid Framework for Balanced City Development
- URL: http://arxiv.org/abs/2412.15349v1
- Date: Thu, 19 Dec 2024 19:30:42 GMT
- Title: Adaptive Urban Planning: A Hybrid Framework for Balanced City Development
- Authors: Pratham Singla, Ayush Singh, Adesh Gupta, Shivank Garg,
- Abstract summary: Urban planning faces a critical challenge in balancing city-wide infrastructure needs with localized demographic preferences.
We propose a two-tier approach, with a deterministic solver optimizing basic infrastructure requirements in the city region.
Four specialized planning agents, each representing distinct sub-regions, propose demographic-specific modifications to a master planner.
The master planner then evaluates and integrates these suggestions to ensure cohesive urban development.
- Score: 1.8921784053120494
- License:
- Abstract: Urban planning faces a critical challenge in balancing city-wide infrastructure needs with localized demographic preferences, particularly in rapidly developing regions. Although existing approaches typically focus on top-down optimization or bottom-up community planning, only some frameworks successfully integrate both perspectives. Our methodology employs a two-tier approach: First, a deterministic solver optimizes basic infrastructure requirements in the city region. Second, four specialized planning agents, each representing distinct sub-regions, propose demographic-specific modifications to a master planner. The master planner then evaluates and integrates these suggestions to ensure cohesive urban development. We validate our framework using a newly created dataset comprising detailed region and sub-region maps from three developing cities in India, focusing on areas undergoing rapid urbanization. The results demonstrate that this hybrid approach enables more nuanced urban development while maintaining overall city functionality.
Related papers
- Planning, Living and Judging: A Multi-agent LLM-based Framework for Cyclical Urban Planning [5.9423583597394325]
Urban regeneration presents significant challenges within the context of urbanization.
We propose Cyclical Urban Planning (CUP), a new paradigm that continuously generates, evaluates, and refines urban plans in a closed-loop.
Experiments on the real-world dataset demonstrate the effectiveness of our framework as a continuous and adaptive planning process.
arXiv Detail & Related papers (2024-12-29T15:43:25Z) - PlanGPT: Enhancing Urban Planning with Tailored Language Model and
Efficient Retrieval [8.345858904808873]
General-purpose large language models often struggle to meet the specific needs of planners.
PlanGPT is the first specialized Large Language Model tailored for urban and spatial planning.
arXiv Detail & Related papers (2024-02-29T15:41:20Z) - AI Agent as Urban Planner: Steering Stakeholder Dynamics in Urban
Planning via Consensus-based Multi-Agent Reinforcement Learning [8.363841553742912]
We introduce a Consensus-based Multi-Agent Reinforcement Learning framework for real-world land use readjustment.
This framework serves participatory urban planning, allowing diverse intelligent agents as stakeholder representatives to vote for preferred land use types.
By integrating Multi-Agent Reinforcement Learning, our framework ensures that participatory urban planning decisions are more dynamic and adaptive to evolving community needs.
arXiv Detail & Related papers (2023-10-25T17:04:11Z) - Dual-stage Flows-based Generative Modeling for Traceable Urban Planning [33.03616838528995]
We propose a novel generative framework based on normalizing flows, namely Dual-stage Urban Flows framework.
We employ an Information Fusion Module to capture the relationship among functional zones and fuse the information of different aspects.
Our framework can outperform compared to other generative models for the urban planning task.
arXiv Detail & Related papers (2023-10-03T21:49:49Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - UrbanBIS: a Large-scale Benchmark for Fine-grained Urban Building
Instance Segmentation [50.52615875873055]
UrbanBIS comprises six real urban scenes, with 2.5 billion points, covering a vast area of 10.78 square kilometers.
UrbanBIS provides semantic-level annotations on a rich set of urban objects, including buildings, vehicles, vegetation, roads, and bridges.
UrbanBIS is the first 3D dataset that introduces fine-grained building sub-categories.
arXiv Detail & Related papers (2023-05-04T08:01:38Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
We develop a novel human-instructed deep hierarchical generative model to generate optimal urban plans.
The first stage is to label the grids of a target area with latent functionalities to discover functional zones.
The second stage is to perceive the planning requirements to form urban functionality projections.
The third stage is to leverage multi-attentions to model the zone-zone peer dependencies of the functionality projections to generate grid-level land-use configurations.
arXiv Detail & Related papers (2022-12-01T23:06:41Z) - A Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection [68.84486900183853]
We build an urban region graph (URG) to model the urban area in a hierarchically structured way.
Then, we design a novel contextual master-slave framework to effectively detect the urban village from the URG.
The proposed framework can learn to balance the generality and specificity for UV detection in an urban area.
arXiv Detail & Related papers (2022-11-26T18:17:39Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Measuring Spatial Subdivisions in Urban Mobility with Mobile Phone Data [58.720142291102135]
By 2050 two thirds of the world population will reside in urban areas.
This growth is faster and more complex than the ability of cities to measure and plan for their sustainability.
To understand what makes a city inclusive for all, we define a methodology to identify and characterize spatial subdivisions.
arXiv Detail & Related papers (2020-02-20T14:37:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.