A Unified Framework for Next-Gen Urban Forecasting via LLM-driven Dependency Retrieval and GeoTransformer
- URL: http://arxiv.org/abs/2408.08852v4
- Date: Tue, 17 Jun 2025 02:03:07 GMT
- Title: A Unified Framework for Next-Gen Urban Forecasting via LLM-driven Dependency Retrieval and GeoTransformer
- Authors: Yuhao Jia, Zile Wu, Shengao Yi, Yifei Sun, Xiao Huang,
- Abstract summary: We propose a novel, unified framework for high-dimensional urban forecasting.<n>Our framework is modular, supports diverse representation methods and forecasting models, and can operate even with minimal input.
- Score: 7.128763419599272
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban forecasting has increasingly benefited from high-dimensional spatial data through two primary approaches: graph-based methods that rely on predefined spatial structures, and region-based methods that focus on learning expressive urban representations. Although these methods have laid a strong foundation, they either rely heavily on structured spatial data, struggle to adapt to task-specific dependencies, or fail to integrate holistic urban context. Moreover, no existing framework systematically integrates these two paradigms and overcomes their respective limitations. To address this gap, we propose a novel, unified framework for high-dimensional urban forecasting, composed of three key components: (1) the Urban Region Representation Module that organizes latent embeddings and semantic descriptions for each region, (2) the Task-aware Dependency Retrieval module that selects relevant context regions based on natural language prompts, and (3) the Prediction Module, exemplified by our proposed GeoTransformer architecture, which adopts a novel geospatial attention mechanism to incorporate spatial proximity and information entropy as priors. Our framework is modular, supports diverse representation methods and forecasting models, and can operate even with minimal input. Quantitative experiments and qualitative analysis across six urban forecasting tasks demonstrate strong task generalization and validate the framework's effectiveness.
Related papers
- Spatial Understanding from Videos: Structured Prompts Meet Simulation Data [79.52833996220059]
We present a unified framework for enhancing 3D spatial reasoning in pre-trained vision-language models without modifying their architecture.<n>This framework combines SpatialMind, a structured prompting strategy that decomposes complex scenes and questions into interpretable reasoning steps, with ScanForgeQA, a scalable question-answering dataset built from diverse 3D simulation scenes.
arXiv Detail & Related papers (2025-06-04T07:36:33Z) - Graph Foundation Models: A Comprehensive Survey [66.74249119139661]
Graph Foundation Models (GFMs) aim to bring scalable, general-purpose intelligence to structured data.<n>This survey provides a comprehensive overview of GFMs, unifying diverse efforts under a modular framework.<n>GFMs are poised to become foundational infrastructure for open-ended reasoning over structured data.
arXiv Detail & Related papers (2025-05-21T05:08:00Z) - UrbanMind: Urban Dynamics Prediction with Multifaceted Spatial-Temporal Large Language Models [18.051209616917042]
UrbanMind is a novel spatial-temporal LLM framework for multifaceted urban dynamics prediction.<n>At its core, UrbanMind introduces Muffin-MAE, a multifaceted fusion masked autoencoder with specialized masking strategies.<n>Experiments on real-world urban datasets across multiple cities demonstrate that UrbanMind consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-05-16T19:38:06Z) - EarthMapper: Visual Autoregressive Models for Controllable Bidirectional Satellite-Map Translation [50.433911327489554]
We introduce EarthMapper, a novel framework for controllable satellite-map translation.
We also contribute CNSatMap, a large-scale dataset comprising 302,132 precisely aligned satellite-map pairs across 38 Chinese cities.
experiments on CNSatMap and the New York dataset demonstrate EarthMapper's superior performance.
arXiv Detail & Related papers (2025-04-28T02:41:12Z) - GeoAggregator: An Efficient Transformer Model for Geo-Spatial Tabular Data [5.40483645224129]
This paper introduces GeoAggregator, an efficient and lightweight algorithm for geospatial data modeling.
We benchmark it against spatial statistical models, XGBoost, and several state-of-the-art geospatial deep learning methods.
Results demonstrate that GeoAggregators achieve the best or second-best performance compared to their competitors on nearly all datasets.
arXiv Detail & Related papers (2025-02-20T20:39:15Z) - Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
We introduce a comprehensive geolocation framework with three key components.
GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric.
We demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
arXiv Detail & Related papers (2025-02-19T14:21:25Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)<n>We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.<n>Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Adaptive Urban Planning: A Hybrid Framework for Balanced City Development [1.8921784053120494]
Urban planning faces a critical challenge in balancing city-wide infrastructure needs with localized demographic preferences.<n>We propose a two-tier approach, with a deterministic solver optimizing basic infrastructure requirements in the city region.<n>Four specialized planning agents, each representing distinct sub-regions, propose demographic-specific modifications to a master planner.<n>The master planner then evaluates and integrates these suggestions to ensure cohesive urban development.
arXiv Detail & Related papers (2024-12-19T19:30:42Z) - Enhancing GeoAI and location encoding with spatial point pattern statistics: A Case Study of Terrain Feature Classification [2.724802833397066]
This study introduces a novel approach to terrain feature classification incorporating spatial point pattern statistics into deep learning models.
We improve the GeoAI model by a knowledge driven approach to integrate both first-order and second-order effects of point patterns.
arXiv Detail & Related papers (2024-11-21T20:17:41Z) - Geometric Feature Enhanced Knowledge Graph Embedding and Spatial Reasoning [8.561588656662419]
Geospatial Knowledge Graphs (GeoKGs) model geoentities and spatial relationships in an interconnected manner.
Existing methods for mining and reasoning from GeoKGs, such as popular knowledge graph embedding (KGE) techniques, lack geographic awareness.
This study aims to enhance general-purpose KGE by developing new strategies and integrating geometric features of spatial relations.
arXiv Detail & Related papers (2024-10-24T00:53:48Z) - Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
arXiv Detail & Related papers (2024-08-27T03:30:01Z) - Towards Effective Next POI Prediction: Spatial and Semantic Augmentation with Remote Sensing Data [10.968721742000653]
We propose an effective deep-learning method within a two-step prediction framework.
Our method first incorporates remote sensing data, capturing pivotal environmental context.
We construct the QR-P graph for the user's historical trajectories to encapsulate historical travel knowledge.
arXiv Detail & Related papers (2024-03-22T04:22:36Z) - An Ensemble Framework for Explainable Geospatial Machine Learning Models [16.010404125829876]
We introduce an integrated framework that merges local spatial weighting scheme, Explainable Artificial Intelligence (XAI) and cutting-edge machine learning technologies.
This framework is verified to enhance the interpretability and accuracy of predictions in both geographic regression and classification.
It significantly boosts prediction precision, offering a novel approach to understanding spatial phenomena.
arXiv Detail & Related papers (2024-03-05T21:12:10Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
This paper evaluates the performance of the first-of-its-kind geospatial foundation model, IBM-NASA's Prithvi, to support a crucial geospatial analysis task: flood inundation mapping.
A benchmark dataset, Sen1Floods11, is used in the experiments, and the models' predictability, generalizability, and transferability are evaluated.
Results show the good transferability of the Prithvi model, highlighting its performance advantages in segmenting flooded areas in previously unseen regions.
arXiv Detail & Related papers (2023-09-25T19:50:47Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Attentive Graph Enhanced Region Representation Learning [7.4106801792345705]
Representing urban regions accurately and comprehensively is essential for various urban planning and analysis tasks.
We propose the Attentive Graph Enhanced Region Representation Learning (ATGRL) model, which aims to capture comprehensive dependencies from multiple graphs and learn rich semantic representations of urban regions.
arXiv Detail & Related papers (2023-07-06T16:38:43Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
We study the problem of geographic robustness and make three main contributions.
First, we introduce a large-scale dataset GeoNet for geographic adaptation.
Second, we hypothesize that the major source of domain shifts arise from significant variations in scene context.
Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures.
arXiv Detail & Related papers (2023-03-27T17:59:34Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
Cross-view geo-localization aims to estimate the location of a query ground image by matching it to a reference geo-tagged aerial images database.
Recent works achieve outstanding progress on cross-view geo-localization benchmarks.
However, existing methods still suffer from poor performance on the cross-area benchmarks.
arXiv Detail & Related papers (2022-12-08T04:54:01Z) - Human-instructed Deep Hierarchical Generative Learning for Automated
Urban Planning [57.91323079939641]
We develop a novel human-instructed deep hierarchical generative model to generate optimal urban plans.
The first stage is to label the grids of a target area with latent functionalities to discover functional zones.
The second stage is to perceive the planning requirements to form urban functionality projections.
The third stage is to leverage multi-attentions to model the zone-zone peer dependencies of the functionality projections to generate grid-level land-use configurations.
arXiv Detail & Related papers (2022-12-01T23:06:41Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
Geographic variance in satellite imagery impacts the ability of machine learning models to generalise to new regions.
We model geographic generalisation in medium resolution Landsat-8 satellite imagery as a continuous domain adaptation problem.
We develop a dataset spatially distributed across the entire continental United States.
arXiv Detail & Related papers (2022-04-14T15:41:39Z) - Co-visual pattern augmented generative transformer learning for
automobile geo-localization [12.449657263683337]
Cross-view geo-localization (CVGL) aims to estimate the geographical location of the ground-level camera by matching against enormous geo-tagged aerial images.
We present a novel approach using cross-view knowledge generative techniques in combination with transformers, namely mutual generative transformer learning (MGTL) for CVGL.
arXiv Detail & Related papers (2022-03-17T07:29:02Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
We propose using a neural embedding model-graph neural network (GNN)- that leverages the heterogeneous features of urban areas.
Using large-scale high-resolution mobility data sets from millions of aggregated and anonymized mobile phone users in 16 metropolitan counties in the United States, we demonstrate that our embeddings encode complex relationships among features related to urban components.
We show that embeddings generated by a model trained on a different county can capture 50% to 60% of the emergent spatial structure in another county.
arXiv Detail & Related papers (2021-10-24T07:13:14Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
Predicting commuting flows based on infrastructure and land-use information is critical for urban planning and public policy development.
Conventional models, such as gravity model, are mainly derived from physics principles and limited by their predictive power in real-world scenarios.
We propose Geo-contextual Multitask Embedding Learner (GMEL), a model that captures the spatial correlations from geographic contextual information for commuting flow prediction.
arXiv Detail & Related papers (2020-05-04T17:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.