Automatic Extraction of Metaphoric Analogies from Literary Texts: Task Formulation, Dataset Construction, and Evaluation
- URL: http://arxiv.org/abs/2412.15375v1
- Date: Thu, 19 Dec 2024 20:11:04 GMT
- Title: Automatic Extraction of Metaphoric Analogies from Literary Texts: Task Formulation, Dataset Construction, and Evaluation
- Authors: Joanne Boisson, Zara Siddique, Hsuvas Borkakoty, Dimosthenis Antypas, Luis Espinosa Anke, Jose Camacho-Collados,
- Abstract summary: This study focuses on the extraction of the concepts that form metaphoric analogies in literary texts.
We construct a novel dataset in this domain with the help of domain experts.
We compare the out-of-the-box ability of recent large language models to structure metaphoric mappings.
- Score: 13.748219100529955
- License:
- Abstract: Extracting metaphors and analogies from free text requires high-level reasoning abilities such as abstraction and language understanding. Our study focuses on the extraction of the concepts that form metaphoric analogies in literary texts. To this end, we construct a novel dataset in this domain with the help of domain experts. We compare the out-of-the-box ability of recent large language models (LLMs) to structure metaphoric mappings from fragments of texts containing proportional analogies. The models are further evaluated on the generation of implicit elements of the analogy, which are indirectly suggested in the texts and inferred by human readers. The competitive results obtained by LLMs in our experiments are encouraging and open up new avenues such as automatically extracting analogies and metaphors from text instead of investing resources in domain experts to manually label data.
Related papers
- Interpretable Text Embeddings and Text Similarity Explanation: A Primer [5.474797258314828]
We give a structured overview of interpretability methods specializing in explaining obtained similarity scores.
We study the methods' individual ideas and techniques, evaluating their potential for improving interpretability of text embeddings and explaining predicted similarities.
arXiv Detail & Related papers (2025-02-20T18:59:34Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - StoryAnalogy: Deriving Story-level Analogies from Large Language Models
to Unlock Analogical Understanding [72.38872974837462]
We evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus.
textscStory Analogy contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory.
We observe that the data in textscStory Analogy can improve the quality of analogy generation in large language models.
arXiv Detail & Related papers (2023-10-19T16:29:23Z) - Why Do We Need Neuro-symbolic AI to Model Pragmatic Analogies? [6.8107181513711055]
A hallmark of intelligence is the ability to use a familiar domain to make inferences about a less familiar domain, known as analogical reasoning.
We discuss analogies at four distinct levels of complexity: lexical analogies, syntactic analogies, semantic analogies, and pragmatic analogies.
We employ Neuro-symbolic AI techniques that combine statistical and symbolic AI, informing the representation of unstructured text to highlight and augment relevant content, provide abstraction and guide the mapping process.
arXiv Detail & Related papers (2023-08-02T21:13:38Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
We introduce a method for the analysis of text that takes implicitly communicated content explicitly into account.
We use a large language model to produce sets of propositions that are inferentially related to the text that has been observed.
Our results suggest that modeling the meanings behind observed language, rather than the literal text alone, is a valuable direction for NLP.
arXiv Detail & Related papers (2023-05-23T23:45:20Z) - Beneath Surface Similarity: Large Language Models Make Reasonable
Scientific Analogies after Structure Abduction [46.2032673640788]
The vital role of analogical reasoning in human cognition allows us to grasp novel concepts by linking them with familiar ones through shared relational structures.
This work suggests that Large Language Models (LLMs) often overlook the structures that underpin these analogies.
This paper introduces a task of analogical structure abduction, grounded in cognitive psychology, designed to abduce structures that form an analogy between two systems.
arXiv Detail & Related papers (2023-05-22T03:04:06Z) - Description-Based Text Similarity [59.552704474862004]
We identify the need to search for texts based on abstract descriptions of their content.
We propose an alternative model that significantly improves when used in standard nearest neighbor search.
arXiv Detail & Related papers (2023-05-21T17:14:31Z) - Scientific and Creative Analogies in Pretrained Language Models [24.86477727507679]
This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2.
We introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains.
We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.
arXiv Detail & Related papers (2022-11-28T12:49:44Z) - Life is a Circus and We are the Clowns: Automatically Finding Analogies
between Situations and Processes [12.8252101640812]
Much research has suggested that analogies are key to non-brittle systems that can adapt to new domains.
Despite their importance, analogies received little attention in the NLP community.
arXiv Detail & Related papers (2022-10-21T18:54:17Z) - Improve Discourse Dependency Parsing with Contextualized Representations [28.916249926065273]
We propose to take advantage of transformers to encode contextualized representations of units of different levels.
Motivated by the observation of writing patterns commonly shared across articles, we propose a novel method that treats discourse relation identification as a sequence labelling task.
arXiv Detail & Related papers (2022-05-04T14:35:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.