Investigating Relational State Abstraction in Collaborative MARL
- URL: http://arxiv.org/abs/2412.15388v1
- Date: Thu, 19 Dec 2024 20:34:00 GMT
- Title: Investigating Relational State Abstraction in Collaborative MARL
- Authors: Sharlin Utke, Jeremie Houssineau, Giovanni Montana,
- Abstract summary: This paper explores the impact of state abstraction on sample efficiency and performance in collaborative Multi-Agent Reinforcement Learning.
The proposed abstraction is based on spatial relationships in environments where direct communication between agents is not allowed.
We introduce MARC (Multi-Agent Critic), incorporating inductive biases by transforming state into a spatial graph and processing it through a relational graph neural network.
- Score: 5.052293146674794
- License:
- Abstract: This paper explores the impact of relational state abstraction on sample efficiency and performance in collaborative Multi-Agent Reinforcement Learning. The proposed abstraction is based on spatial relationships in environments where direct communication between agents is not allowed, leveraging the ubiquity of spatial reasoning in real-world multi-agent scenarios. We introduce MARC (Multi-Agent Relational Critic), a simple yet effective critic architecture incorporating spatial relational inductive biases by transforming the state into a spatial graph and processing it through a relational graph neural network. The performance of MARC is evaluated across six collaborative tasks, including a novel environment with heterogeneous agents. We conduct a comprehensive empirical analysis, comparing MARC against state-of-the-art MARL baselines, demonstrating improvements in both sample efficiency and asymptotic performance, as well as its potential for generalization. Our findings suggest that a minimal integration of spatial relational inductive biases as abstraction can yield substantial benefits without requiring complex designs or task-specific engineering. This work provides insights into the potential of relational state abstraction to address sample efficiency, a key challenge in MARL, offering a promising direction for developing more efficient algorithms in spatially complex environments.
Related papers
- An Extended Benchmarking of Multi-Agent Reinforcement Learning Algorithms in Complex Fully Cooperative Tasks [0.0]
Multi-Agent Reinforcement Learning (MARL) has recently emerged as a significant area of research.
MARL evaluation often lacks systematic diversity, hindering a comprehensive understanding of algorithms' capabilities.
arXiv Detail & Related papers (2025-02-07T09:17:02Z) - Exploiting Structure in Offline Multi-Agent RL: The Benefits of Low Interaction Rank [52.831993899183416]
We introduce a structural assumption -- the interaction rank -- and establish that functions with low interaction rank are significantly more robust to distribution shift compared to general ones.
We demonstrate that utilizing function classes with low interaction rank, when combined with regularization and no-regret learning, admits decentralized, computationally and statistically efficient learning in offline MARL.
arXiv Detail & Related papers (2024-10-01T22:16:22Z) - Coordination Failure in Cooperative Offline MARL [3.623224034411137]
We focus on coordination failure and investigate the role of joint actions in multi-agent policy gradients with offline data.
By using two-player games as an analytical tool, we demonstrate a simple yet overlooked failure mode of BRUD-based algorithms.
We propose an approach to mitigate such failure, by prioritising samples from the dataset based on joint-action similarity.
arXiv Detail & Related papers (2024-07-01T14:51:29Z) - Spatio-temporal Value Semantics-based Abstraction for Dense Deep Reinforcement Learning [1.4542411354617986]
Intelligent Cyber-Physical Systems (ICPS) represent a specialized form of Cyber-Physical System (CPS)
CNNs and Deep Reinforcement Learning (DRL) undertake multifaceted tasks encompassing perception, decision-making, and control.
DRL confronts challenges in terms of efficiency, generalization capabilities, and data scarcity during decision-making process.
We propose an innovative abstract modeling approach grounded in spatial-temporal value semantics.
arXiv Detail & Related papers (2024-05-24T02:21:10Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
We propose a novel network structure called hierarchical graph recurrent network(HGRN) for multi-agent cooperation under partial observability.
Based on the above technologies, we proposed a value-based MADRL algorithm called Soft-HGRN and its actor-critic variant named SAC-HRGN.
arXiv Detail & Related papers (2021-09-05T09:51:25Z) - Cooperative Policy Learning with Pre-trained Heterogeneous Observation
Representations [51.8796674904734]
We propose a new cooperative learning framework with pre-trained heterogeneous observation representations.
We employ an encoder-decoder based graph attention to learn the intricate interactions and heterogeneous representations.
arXiv Detail & Related papers (2020-12-24T04:52:29Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.