Understanding the Information Propagation Effects of Communication Topologies in LLM-based Multi-Agent Systems
- URL: http://arxiv.org/abs/2505.23352v1
- Date: Thu, 29 May 2025 11:21:48 GMT
- Title: Understanding the Information Propagation Effects of Communication Topologies in LLM-based Multi-Agent Systems
- Authors: Xu Shen, Yixin Liu, Yiwei Dai, Yili Wang, Rui Miao, Yue Tan, Shirui Pan, Xin Wang,
- Abstract summary: We present a causal framework to analyze how agent outputs, whether correct or erroneous, propagate under topologies with varying sparsity.<n>Our empirical studies reveal that moderately sparse topologies, which effectively suppress error propagation while preserving beneficial information diffusion, typically achieve optimal task performance.<n>We propose a novel topology design approach, EIB-leanrner, that balances error suppression and beneficial information propagation by fusing connectivity patterns from both dense and sparse graphs.
- Score: 58.95962217043371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The communication topology in large language model-based multi-agent systems fundamentally governs inter-agent collaboration patterns, critically shaping both the efficiency and effectiveness of collective decision-making. While recent studies for communication topology automated design tend to construct sparse structures for efficiency, they often overlook why and when sparse and dense topologies help or hinder collaboration. In this paper, we present a causal framework to analyze how agent outputs, whether correct or erroneous, propagate under topologies with varying sparsity. Our empirical studies reveal that moderately sparse topologies, which effectively suppress error propagation while preserving beneficial information diffusion, typically achieve optimal task performance. Guided by this insight, we propose a novel topology design approach, EIB-leanrner, that balances error suppression and beneficial information propagation by fusing connectivity patterns from both dense and sparse graphs. Extensive experiments show the superior effectiveness, communication cost, and robustness of EIB-leanrner.
Related papers
- Intrinsic Tensor Field Propagation in Large Language Models: A Novel Approach to Contextual Information Flow [0.0]
Intrinsic Field propagation improves contextual retention, dependency resolution, and inference across various linguistic structures.<n>Experiments conducted on an open-source transformer-based model demonstrate that I provides measurable improvements in contextual retention, dependency resolution, and inference across various linguistic structures.
arXiv Detail & Related papers (2025-01-31T08:32:32Z) - Structured IB: Improving Information Bottleneck with Structured Feature Learning [32.774660308233635]
We introduce Structured IB, a framework for investigating potential structured features.<n>Our experiments demonstrate superior prediction accuracy and task-relevant information compared to the original IB Lagrangian method.
arXiv Detail & Related papers (2024-12-11T09:17:45Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - BDHT: Generative AI Enables Causality Analysis for Mild Cognitive Impairment [34.60961915466469]
A brain diffuser with hierarchical transformer (BDHT) is proposed to estimate effective connectivity for mild cognitive impairment (MCI) analysis.
The proposed model achieves superior performance in terms of accuracy and robustness compared to existing approaches.
arXiv Detail & Related papers (2023-12-14T15:12:00Z) - Exchange-of-Thought: Enhancing Large Language Model Capabilities through
Cross-Model Communication [76.04373033082948]
Large Language Models (LLMs) have recently made significant strides in complex reasoning tasks through the Chain-of-Thought technique.
We propose Exchange-of-Thought (EoT), a novel framework that enables cross-model communication during problem-solving.
arXiv Detail & Related papers (2023-12-04T11:53:56Z) - Topology-Matching Normalizing Flows for Out-of-Distribution Detection in
Robot Learning [38.97407602443256]
A powerful approach for Out-of-Distribution (OOD) detection is based on density estimation with Normalizing Flows (NFs)
In this work, we circumvent this topological mismatch using an expressive class-conditional base distribution trained with an information-theoretic objective to match the required topology.
We demonstrate superior results in density estimation and 2D object detection benchmarks in comparison with extensive baselines.
arXiv Detail & Related papers (2023-11-11T05:09:31Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
We have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing.
This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure.
We propose a causality-enhanced method called Exponential Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models.
arXiv Detail & Related papers (2022-12-20T18:31:50Z) - Position-aware Structure Learning for Graph Topology-imbalance by
Relieving Under-reaching and Over-squashing [67.83086131278904]
Topology-imbalance is a graph-specific imbalance problem caused by the uneven topology positions of labeled nodes.
We propose a novel position-aware graph structure learning framework named PASTEL.
Our key insight is to enhance the connectivity of nodes within the same class for more supervision information.
arXiv Detail & Related papers (2022-08-17T14:04:21Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.