Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage
- URL: http://arxiv.org/abs/2302.12709v1
- Date: Fri, 17 Feb 2023 07:37:54 GMT
- Title: Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage
- Authors: Iksoo Choi and Wonyong Sung
- Abstract summary: Sleep-stage classification using simple sensors, such as single-channel electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) or electrocardiography (ECG) has gained substantial interest.
In this study, we proposed a sleep model that predicts the next sleep stage and used it to improve sleep classification accuracy.
- Score: 18.059360820527687
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As sleep disorders are becoming more prevalent there is an urgent need to
classify sleep stages in a less disturbing way.In particular, sleep-stage
classification using simple sensors, such as single-channel
electroencephalography (EEG), electrooculography (EOG), electromyography (EMG),
or electrocardiography (ECG) has gained substantial interest. In this study, we
proposed a sleep model that predicts the next sleep stage and used it to
improve sleep classification accuracy. The sleep models were built using
sleep-sequence data and employed either statistical $n$-gram or deep neural
network-based models. We developed beam-search decoding to combine the
information from the sensor and the sleep models. Furthermore, we evaluated the
performance of the $n$-gram and long short-term memory (LSTM) recurrent neural
network (RNN)-based sleep models and demonstrated the improvement of
sleep-stage classification using an EOG sensor. The developed sleep models
significantly improved the accuracy of sleep-stage classification, particularly
in the absence of an EEG sensor.
Related papers
- REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba [5.606144017978037]
We develop an automated model for sleep staging and disorder classification to enhance diagnostic accuracy and efficiency.
Considering the characteristics of polysomnography (PSG) multi-lead sleep monitoring, we designed a multimodal sleep state classification model, MSSC-BiMamba.
The model is the first to apply BiMamba to sleep staging with multimodal PSG data, showing substantial gains in computational and memory efficiency.
arXiv Detail & Related papers (2024-05-30T15:16:53Z) - Sleep Stage Classification Using a Pre-trained Deep Learning Model [0.0]
"EEGMobile" is a machine-learning model that learns from electroencephalogram (EEG) spectrograms of brain signals.
The model achieved an accuracy of 86.97% on a publicly available dataset named "Sleep-EDF20", outperforming other models proposed by different researchers.
arXiv Detail & Related papers (2023-09-12T23:02:19Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Predicting Sleeping Quality using Convolutional Neural Networks [6.236890292833385]
We propose a Convolution Neural Network (CNN) architecture that improves the classification performance.
We benchmark the classification performance from different methods, including traditional machine learning methods.
The accuracy, sensitivity, specificity, precision, recall, and F-score are reported and will serve as a baseline to simulate the research.
arXiv Detail & Related papers (2022-04-24T21:48:54Z) - Deep Learning for Sleep Stages Classification: Modified Rectified Linear
Unit Activation Function and Modified Orthogonal Weight Initialisation [27.681891555949672]
This research aims to increase the accuracy and reduce the learning time of Convolutional Neural Network.
The proposed system uses Leaky Rectified Linear Unit (ReLU) instead of sigmoid activation function as an activation function.
arXiv Detail & Related papers (2022-02-18T18:29:15Z) - Sleep syndromes onset detection based on automatic sleep staging
algorithm [0.0]
A Fast Fourier Transform is applied to 30 seconds long epochs of EEG recordings to provide localized time-frequency information.
A deep convolutional LSTM neural network is trained for sleep stage classification.
The code evaluation showed impressive results, reaching an accuracy of 86.43, precision of 77.76, recall of 93,32, F1-score of 89.12 with the final mean false error loss of 0.09.
arXiv Detail & Related papers (2021-07-07T15:38:47Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.