Offline Safe Reinforcement Learning Using Trajectory Classification
- URL: http://arxiv.org/abs/2412.15429v1
- Date: Thu, 19 Dec 2024 22:29:03 GMT
- Title: Offline Safe Reinforcement Learning Using Trajectory Classification
- Authors: Ze Gong, Akshat Kumar, Pradeep Varakantham,
- Abstract summary: We learn a policy that generates desirable trajectories and avoids undesirable trajectories.
We extensively evaluate our method using the DSRL benchmark for offline safe RL.
- Score: 21.956407710821416
- License:
- Abstract: Offline safe reinforcement learning (RL) has emerged as a promising approach for learning safe behaviors without engaging in risky online interactions with the environment. Most existing methods in offline safe RL rely on cost constraints at each time step (derived from global cost constraints) and this can result in either overly conservative policies or violation of safety constraints. In this paper, we propose to learn a policy that generates desirable trajectories and avoids undesirable trajectories. To be specific, we first partition the pre-collected dataset of state-action trajectories into desirable and undesirable subsets. Intuitively, the desirable set contains high reward and safe trajectories, and undesirable set contains unsafe trajectories and low-reward safe trajectories. Second, we learn a policy that generates desirable trajectories and avoids undesirable trajectories, where (un)desirability scores are provided by a classifier learnt from the dataset of desirable and undesirable trajectories. This approach bypasses the computational complexity and stability issues of a min-max objective that is employed in existing methods. Theoretically, we also show our approach's strong connections to existing learning paradigms involving human feedback. Finally, we extensively evaluate our method using the DSRL benchmark for offline safe RL. Empirically, our method outperforms competitive baselines, achieving higher rewards and better constraint satisfaction across a wide variety of benchmark tasks.
Related papers
- Reward-Safety Balance in Offline Safe RL via Diffusion Regularization [16.5825143820431]
Constrained reinforcement learning (RL) seeks high-performance policies under safety constraints.
We propose Diffusion-Regularized Constrained Offline Reinforcement Learning (DRCORL)
DRCORL first uses a diffusion model to capture the behavioral policy from offline data and then extracts a simplified policy to enable efficient inference.
arXiv Detail & Related papers (2025-02-18T00:00:03Z) - Latent Safety-Constrained Policy Approach for Safe Offline Reinforcement Learning [7.888219789657414]
In safe offline reinforcement learning (RL), the objective is to develop a policy that maximizes cumulative rewards while strictly adhering to safety constraints.
We address these issues with a novel approach that begins by learning a conservatively safe policy through the use of Conditional Variational Autoencoders.
We frame this as a Constrained Reward-Return Maximization problem, wherein the policy aims to optimize rewards while complying with the inferred latent safety constraints.
arXiv Detail & Related papers (2024-12-11T22:00:07Z) - Offline Goal-Conditioned Reinforcement Learning for Safety-Critical
Tasks with Recovery Policy [4.854443247023496]
offline goal-conditioned reinforcement learning (GCRL) aims at solving goal-reaching tasks with sparse rewards from an offline dataset.
We propose a new method called Recovery-based Supervised Learning (RbSL) to accomplish safety-critical tasks with various goals.
arXiv Detail & Related papers (2024-03-04T05:20:57Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Constraints Penalized Q-Learning for Safe Offline Reinforcement Learning [15.841609263723575]
We study the problem of safe offline reinforcement learning (RL)
The goal is to learn a policy that maximizes long-term reward while satisfying safety constraints given only offline data, without further interaction with the environment.
We show that na"ive approaches that combine techniques from safe RL and offline RL can only learn sub-optimal solutions.
arXiv Detail & Related papers (2021-07-19T16:30:14Z) - Conservative Safety Critics for Exploration [120.73241848565449]
We study the problem of safe exploration in reinforcement learning (RL)
We learn a conservative safety estimate of environment states through a critic.
We show that the proposed approach can achieve competitive task performance while incurring significantly lower catastrophic failure rates.
arXiv Detail & Related papers (2020-10-27T17:54:25Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.