論文の概要: Offline Safe Reinforcement Learning Using Trajectory Classification
- arxiv url: http://arxiv.org/abs/2412.15429v2
- Date: Mon, 24 Feb 2025 17:22:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:49:27.017307
- Title: Offline Safe Reinforcement Learning Using Trajectory Classification
- Title(参考訳): 軌道分類を用いたオフライン安全強化学習
- Authors: Ze Gong, Akshat Kumar, Pradeep Varakantham,
- Abstract要約: 我々は、望ましい軌跡を生成し、望ましくない軌跡を避ける政策を学ぶ。
オフライン安全なRLのためのDSRLベンチマークを用いて,本手法を広範囲に評価した。
- 参考スコア(独自算出の注目度): 21.956407710821416
- License:
- Abstract: Offline safe reinforcement learning (RL) has emerged as a promising approach for learning safe behaviors without engaging in risky online interactions with the environment. Most existing methods in offline safe RL rely on cost constraints at each time step (derived from global cost constraints) and this can result in either overly conservative policies or violation of safety constraints. In this paper, we propose to learn a policy that generates desirable trajectories and avoids undesirable trajectories. To be specific, we first partition the pre-collected dataset of state-action trajectories into desirable and undesirable subsets. Intuitively, the desirable set contains high reward and safe trajectories, and undesirable set contains unsafe trajectories and low-reward safe trajectories. Second, we learn a policy that generates desirable trajectories and avoids undesirable trajectories, where (un)desirability scores are provided by a classifier learnt from the dataset of desirable and undesirable trajectories. This approach bypasses the computational complexity and stability issues of a min-max objective that is employed in existing methods. Theoretically, we also show our approach's strong connections to existing learning paradigms involving human feedback. Finally, we extensively evaluate our method using the DSRL benchmark for offline safe RL. Empirically, our method outperforms competitive baselines, achieving higher rewards and better constraint satisfaction across a wide variety of benchmark tasks.
- Abstract(参考訳): オフライン型安全強化学習(RL)は、環境とのリスクの高いオンラインインタラクションを伴わずに、安全な行動を学ぶための有望なアプローチとして登場した。
オフラインセーフなRLの既存の方法の多くは、(グローバルなコスト制約から派生した)各段階のコスト制約に依存しており、これは過度に保守的なポリシーや安全制約違反をもたらす可能性がある。
本稿では,望ましい軌跡を生成し,望ましくない軌跡を避ける政策を学習することを提案する。
具体的には、まず、あらかじめ収集した状態-作用軌跡のデータセットを望ましいサブセットと望ましくないサブセットに分割する。
直感的には、所望の集合は高い報酬と安全な軌道を含み、望ましくない集合は安全でない軌道と低逆の安全な軌道を含む。
次に,望ましいトラジェクトリを生成するポリシを学習し,望ましくないトラジェクトリのデータセットから学習した分類器によって,望ましくないトラジェクトリのスコアが提供される。
このアプローチは、既存の手法で用いられるmin-max目標の計算複雑性と安定性の問題を回避する。
理論的には、人間のフィードバックを含む既存の学習パラダイムへのアプローチの強いつながりを示す。
最後に、DSRLベンチマークを用いて、オフライン安全なRLの手法を広範囲に評価する。
実験により,提案手法は,様々なベンチマークタスクにおいて,より高い報酬とより良い制約満足度を達成し,競争基準よりも優れることがわかった。
関連論文リスト
- Reward-Safety Balance in Offline Safe RL via Diffusion Regularization [16.5825143820431]
制約付き強化学習(RL)は、安全制約下での高性能な政策を求める。
拡散規則化制約付きオフライン強化学習(DRCORL)を提案する。
DRCORLは、まず拡散モデルを使用して、オフラインデータから行動ポリシーをキャプチャし、その後、効率的な推論を可能にするために単純化されたポリシーを抽出する。
論文 参考訳(メタデータ) (2025-02-18T00:00:03Z) - Latent Safety-Constrained Policy Approach for Safe Offline Reinforcement Learning [7.888219789657414]
安全オフライン強化学習(RL)において、安全制約を厳格に遵守しつつ累積報酬を最大化する政策を開発することが目的である。
本稿では, 条件付き変分オートエンコーダを用いて, 保守的に安全な政策を学習することから始まる新しいアプローチを用いて, この問題に対処する。
我々は、これを制約付き逆戻り最大化問題とみなし、この政策は、推定された潜伏安全性の制約に従い、報酬を最適化することを目的としている。
論文 参考訳(メタデータ) (2024-12-11T22:00:07Z) - Offline Goal-Conditioned Reinforcement Learning for Safety-Critical
Tasks with Recovery Policy [4.854443247023496]
オフライン目標条件強化学習(GCRL)は、オフラインデータセットから少ない報酬で目標達成タスクを解決することを目的としている。
本稿では,RbSL(Recovery-based Supervised Learning)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T05:20:57Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Constraints Penalized Q-Learning for Safe Offline Reinforcement Learning [15.841609263723575]
安全オフライン強化学習(RL)の問題点について検討する。
目標は、オフラインデータのみに与えられる安全制約を満たしつつ、環境とのさらなる相互作用を伴わずに、長期的な報酬を最大化する政策を学習することである。
安全なRLとオフラインのRLの手法を組み合わせれば、準最適解しか学習できないことを示す。
論文 参考訳(メタデータ) (2021-07-19T16:30:14Z) - Conservative Safety Critics for Exploration [120.73241848565449]
強化学習(RL)における安全な探索の課題について検討する。
我々は、批評家を通じて環境状態の保守的な安全性推定を学習する。
提案手法は,破滅的故障率を著しく低く抑えながら,競争力のあるタスク性能を実現することができることを示す。
論文 参考訳(メタデータ) (2020-10-27T17:54:25Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。