論文の概要: Toward Appearance-based Autonomous Landing Site Identification for Multirotor Drones in Unstructured Environments
- arxiv url: http://arxiv.org/abs/2412.15486v1
- Date: Fri, 20 Dec 2024 01:48:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:02.228055
- Title: Toward Appearance-based Autonomous Landing Site Identification for Multirotor Drones in Unstructured Environments
- Title(参考訳): 非構造環境におけるマルチロータドローンの出現型自律着陸地点識別に向けて
- Authors: Joshua Springer, Gylfi Þór Guðmundsson, Marcel Kyas,
- Abstract要約: 地形分類器を学習するための合成データセットを自動生成するパイプラインを提案する。
次に、合成データセット上でU-Netをトレーニングし、実世界のデータで検証し、リアルタイムでドローンプラットフォーム上でそれを実証します。
- 参考スコア(独自算出の注目度): 0.09103230894909536
- License:
- Abstract: A remaining challenge in multirotor drone flight is the autonomous identification of viable landing sites in unstructured environments. One approach to solve this problem is to create lightweight, appearance-based terrain classifiers that can segment a drone's RGB images into safe and unsafe regions. However, such classifiers require data sets of images and masks that can be prohibitively expensive to create. We propose a pipeline to automatically generate synthetic data sets to train these classifiers, leveraging modern drones' ability to survey terrain automatically and the ability to automatically calculate landing safety masks from terrain models derived from such surveys. We then train a U-Net on the synthetic data set, test it on real-world data for validation, and demonstrate it on our drone platform in real-time.
- Abstract(参考訳): マルチローター・ドローンの飛行における残りの課題は、非構造環境における着陸地点の自律的な識別である。
この問題を解決する方法の1つは、ドローンのRGB画像を安全で安全でない領域に分割できる、軽量で外観ベースの地形分類器を作ることである。
しかし、そのような分類器は画像やマスクのデータセットを必要とするため、作成には極めて高価である。
本研究では、これらの分類器を訓練するための合成データセットを自動的に生成するパイプラインを提案し、現代のドローンが地形を自動調査する能力と、そのような調査から得られた地形モデルから着陸安全マスクを自動計算する能力を活用している。
次に、合成データセット上でU-Netをトレーニングし、実世界のデータで検証し、リアルタイムでドローンプラットフォーム上でそれを実証します。
関連論文リスト
- Drone Detection using Deep Neural Networks Trained on Pure Synthetic Data [0.4369058206183195]
実世界のデータに転送する純粋に合成されたデータセットに基づいて訓練されたドローン検出高速RCNNモデルを提案する。
以上の結果から, 合成データを用いたドローン検出は, 収集コストを低減し, ラベル付け品質を向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-13T23:09:53Z) - Learning autonomous driving from aerial imagery [67.06858775696453]
フォトグラムシミュレーターは、生成済みの資産を新しいビューに変換することによって、新しいビューを合成することができる。
我々は、ニューラルネットワーク場(NeRF)を中間表現として使用し、地上車両の視点から新しいビューを合成する。
論文 参考訳(メタデータ) (2024-10-18T05:09:07Z) - C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks [23.133250476580038]
衝突回避、敵のドローン対策、捜索救助活動など、さまざまな用途において、視覚に基づくドローンからドローンまでの検出システムは不可欠である。
ドローンの検出には、小さなオブジェクトのサイズ、歪み、リアルタイム処理要求など、ユニークな課題がある。
本稿では,視覚変換器に基づく粗大な検出手法を提案する。
論文 参考訳(メタデータ) (2024-04-30T05:51:21Z) - LARD - Landing Approach Runway Detection -- Dataset for Vision Based
Landing [2.7400353551392853]
本稿では,接近・着陸時の滑走路検出のための高品質な空中画像のデータセットを提案する。
データセットの大部分は合成画像で構成されていますが、実際の着陸映像から手動でラベル付けされた画像も提供しています。
このデータセットは、データセットの品質の分析や、検出タスクに対処するモデルの開発など、さらなる研究の道を開く。
論文 参考訳(メタデータ) (2023-04-05T08:25:55Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
視覚的フィードを用いたドローンからドローンへの検知は、ドローンの衝突の検出、ドローンの攻撃の検出、他のドローンとの飛行の調整など、重要な応用がある。
既存の手法は計算コストがかかり、非エンドツーエンドの最適化に追随し、複雑なマルチステージパイプラインを持つため、エッジデバイス上でのリアルタイムデプロイメントには適さない。
計算効率を向上したエンドツーエンドのソリューションを提供する,シンプルで効果的なフレームワークであるitTransVisDroneを提案する。
論文 参考訳(メタデータ) (2022-10-16T03:05:13Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - DronePose: The identification, segmentation, and orientation detection
of drones via neural networks [3.161871054978445]
飛行中のドローンを完全に特徴付けるために,決定木とアンサンブル構造を用いたCNNを提案する。
我々のシステムは、ドローンの種類、方向(ピッチ、ロール、ヨー)を決定し、異なる身体部位を分類するためにセグメンテーションを行う。
また,高精度にラベル付けされた写真リアリスティックトレーニングデータを高速に生成するためのコンピュータモデルも提供する。
論文 参考訳(メタデータ) (2021-12-10T12:34:53Z) - Solving Occlusion in Terrain Mapping with Neural Networks [7.703348666813963]
本研究では,実世界のデータに基づいて,地上情報を必要としない自己教師付き学習手法を提案する。
私たちのニューラルネットワークは、自律的な地上ロボットに適したサンプリングレートで、CPUとGPUの両方でリアルタイムで実行できます。
論文 参考訳(メタデータ) (2021-09-15T08:30:16Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - AirSim Drone Racing Lab [56.68291351736057]
AirSim Drone Racing Labは、この領域で機械学習研究を可能にするシミュレーションフレームワークである。
本フレームワークは,複数の写真リアル環境下でのレーストラック生成を可能にする。
当社のフレームワークを使用して,NeurIPS 2019で,シミュレーションベースのドローンレースコンペティションを開催しました。
論文 参考訳(メタデータ) (2020-03-12T08:06:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。