論文の概要: Underwater Image Quality Assessment: A Perceptual Framework Guided by Physical Imaging
- arxiv url: http://arxiv.org/abs/2412.15527v1
- Date: Fri, 20 Dec 2024 03:31:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 18:46:08.796666
- Title: Underwater Image Quality Assessment: A Perceptual Framework Guided by Physical Imaging
- Title(参考訳): 水中画像品質評価 : 物理画像による知覚的枠組み
- Authors: Weizhi Xian, Mingliang Zhou, Leong Hou U, Lang Shujun, Bin Fang, Tao Xiang, Zhaowei Shang,
- Abstract要約: PIGUIQAと呼ばれる水中画像品質評価(UIQA)のための物理画像誘導フレームワークを提案する。
提案手法に物理に基づく水中画像推定を取り入れ,直接透過減衰と後方散乱が画質に与える影響を計測する歪み測定値を定義した。
PIGUIQAは水中画像品質予測における最先端性能を実現し,高い一般化性を示す。
- 参考スコア(独自算出の注目度): 52.860312888450096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a physically imaging-guided framework for underwater image quality assessment (UIQA), called PIGUIQA. First, we formulate UIQA as a comprehensive problem that considers the combined effects of direct transmission attenuation and backwards scattering on image perception. On this basis, we incorporate advanced physics-based underwater imaging estimation into our method and define distortion metrics that measure the impact of direct transmission attenuation and backwards scattering on image quality. Second, acknowledging the significant content differences across various regions of an image and the varying perceptual sensitivity to distortions in these regions, we design a local perceptual module on the basis of the neighborhood attention mechanism. This module effectively captures subtle features in images, thereby enhancing the adaptive perception of distortions on the basis of local information. Finally, by employing a global perceptual module to further integrate the original image content with underwater image distortion information, the proposed model can accurately predict the image quality score. Comprehensive experiments demonstrate that PIGUIQA achieves state-of-the-art performance in underwater image quality prediction and exhibits strong generalizability. The code for PIGUIQA is available on https://anonymous.4open.science/r/PIGUIQA-A465/
- Abstract(参考訳): 本稿では,水中画像品質評価(UIQA)のための物理画像誘導フレームワークPIGUIQAを提案する。
まず,直接透過減衰と後方散乱が画像知覚に与える影響を総合的に検討する。
そこで本研究では,提案手法に物理に基づく水中画像推定手法を取り入れ,直接透過減衰と後方散乱が画像品質に与える影響を計測する歪み指標を定義した。
第2に、画像の様々な領域における有意な内容の違いと、これらの領域における歪みに対する知覚感度の変化を認識し、近隣の注意機構に基づいて局所的な知覚モジュールを設計する。
このモジュールは画像の微妙な特徴を効果的に捉え、局所情報に基づいて歪みの適応知覚を高める。
最後に、グローバルな知覚モジュールを用いて、元の画像内容と水中画像歪み情報をさらに統合することにより、提案モデルは画像品質スコアを正確に予測することができる。
総合的な実験により、PIGUIQAは水中画像の品質予測において最先端の性能を達成し、高い一般化性を示すことが示された。
PIGUIQAのコードはhttps://anonymous.4open.science/r/PIGUIQA-A465/で入手できる。
関連論文リスト
- Scene Perceived Image Perceptual Score (SPIPS): combining global and local perception for image quality assessment [0.0]
深層学習と人間の知覚のギャップを埋める新しいIQA手法を提案する。
我々のモデルは、深い特徴を高レベルの意味情報と低レベルの知覚の詳細に分解し、それぞれのストリームを別々に扱う。
このハイブリッド設計により、グローバルコンテキストと複雑な画像の詳細の両方を評価し、人間の視覚過程をより良く反映することができる。
論文 参考訳(メタデータ) (2025-04-24T04:06:07Z) - DPF-Net: Physical Imaging Model Embedded Data-Driven Underwater Image Enhancement [2.1953477234116705]
本研究では,データ駆動・物理パラメータ融合ネットワーク(DPF-Net)と呼ばれる2段階水中画像強調ネットワークを提案する。
データ駆動方式の一般性と効率性とともに、物理画像モデルの堅牢性を利用する。
提案するDPF-Netは,複数のテストセットにまたがる他のベンチマーク手法と比較して,優れた性能を示す。
論文 参考訳(メタデータ) (2025-03-16T11:53:18Z) - HUPE: Heuristic Underwater Perceptual Enhancement with Semantic Collaborative Learning [62.264673293638175]
既存の水中画像強調法は主に視覚的品質の向上に重点を置いており、実際的な意味を見落としている。
視覚的品質を高め,他の下流タスクに対処する柔軟性を示す,水中知覚向上のための可逆的ネットワークHを提案する。
論文 参考訳(メタデータ) (2024-11-27T12:37:03Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
野生のブラインド画像品質評価(IQA)は重大な課題を呈している。
大規模なトレーニングデータの収集が困難であることを考えると、厳密な一般化モデルを開発するために限られたデータを活用することは、未解決の問題である。
事前訓練されたテキスト・ツー・イメージ(T2I)拡散モデルの堅牢な画像認識能力により,新しいIQA法,拡散先行に基づくIQAを提案する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
本稿では,統計的分布の観点から知覚空間の品質劣化をモデル化する。
品質は、深い特徴領域におけるワッサーシュタイン距離に基づいて測定される。
ニューラルネットワークの特徴に基づいて実行されるディープワッサースタイン距離(ディープWSD)は、品質汚染のより良い解釈性をもたらす。
論文 参考訳(メタデータ) (2022-08-05T02:46:12Z) - UIF: An Objective Quality Assessment for Underwater Image Enhancement [17.145844358253164]
水中画像の客観的評価のための水中画像忠実度(UIF)指標を提案する。
これらの画像の統計的特徴を利用して,自然度,鋭度,構造的特徴を抽出する。
実験の結果,提案したUIFは水中および汎用画像品質指標より優れていたことが確認された。
論文 参考訳(メタデータ) (2022-05-19T08:43:47Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
物理モデルに基づくフィードバック制御と,水中画像の高機能化のための領域適応機構を用いた,新しい頑健な対角学習フレームワークを提案する。
水中画像形成モデルを用いてRGB-Dデータから水中訓練データセットをシミュレーションする新しい手法を提案する。
合成および実水中画像の最終的な改良結果は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2020-02-20T07:50:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。