EGSRAL: An Enhanced 3D Gaussian Splatting based Renderer with Automated Labeling for Large-Scale Driving Scene
- URL: http://arxiv.org/abs/2412.15550v1
- Date: Fri, 20 Dec 2024 04:21:54 GMT
- Title: EGSRAL: An Enhanced 3D Gaussian Splatting based Renderer with Automated Labeling for Large-Scale Driving Scene
- Authors: Yixiong Huo, Guangfeng Jiang, Hongyang Wei, Ji Liu, Song Zhang, Han Liu, Xingliang Huang, Mingjie Lu, Jinzhang Peng, Dong Li, Lu Tian, Emad Barsoum,
- Abstract summary: We propose EGSRAL, a 3D GS-based method that relies solely on training images without extra annotations.
EGSRAL enhances 3D GS's capability to model both dynamic objects and static backgrounds.
We also propose a grouping strategy for vanilla 3D GS to address perspective issues in rendering large-scale, complex scenes.
- Score: 19.20846992699852
- License:
- Abstract: 3D Gaussian Splatting (3D GS) has gained popularity due to its faster rendering speed and high-quality novel view synthesis. Some researchers have explored using 3D GS for reconstructing driving scenes. However, these methods often rely on various data types, such as depth maps, 3D boxes, and trajectories of moving objects. Additionally, the lack of annotations for synthesized images limits their direct application in downstream tasks. To address these issues, we propose EGSRAL, a 3D GS-based method that relies solely on training images without extra annotations. EGSRAL enhances 3D GS's capability to model both dynamic objects and static backgrounds and introduces a novel adaptor for auto labeling, generating corresponding annotations based on existing annotations. We also propose a grouping strategy for vanilla 3D GS to address perspective issues in rendering large-scale, complex scenes. Our method achieves state-of-the-art performance on multiple datasets without any extra annotation. For example, the PSNR metric reaches 29.04 on the nuScenes dataset. Moreover, our automated labeling can significantly improve the performance of 2D/3D detection tasks. Code is available at https://github.com/jiangxb98/EGSRAL.
Related papers
- 3DGS-to-PC: Convert a 3D Gaussian Splatting Scene into a Dense Point Cloud or Mesh [0.552480439325792]
3DGS-to-PC is capable of transforming 3DGS scenes into dense, high-accuracy point clouds.
This package is highly customisable and capability of simple integration into existing 3DGS pipelines.
arXiv Detail & Related papers (2025-01-13T16:52:28Z) - Occam's LGS: A Simple Approach for Language Gaussian Splatting [57.00354758206751]
We show that sophisticated techniques for language-grounded 3D Gaussian Splatting are simply unnecessary.
We apply Occam's razor to the task at hand and perform weighted multi-view feature aggregation.
Our results offer us state-of-the-art results with a speed-up of two orders of magnitude.
arXiv Detail & Related papers (2024-12-02T18:50:37Z) - 3DGS-CD: 3D Gaussian Splatting-based Change Detection for Physical Object Rearrangement [2.2122801766964795]
We present 3DGS-CD, the first 3D Gaussian Splatting (3DGS)-based method for detecting physical object rearrangements in 3D scenes.
Our approach estimates 3D object-level changes by comparing two sets of unaligned images taken at different times.
Our method can accurately identify changes in cluttered environments using sparse (as few as one) post-change images within as little as 18s.
arXiv Detail & Related papers (2024-11-06T07:08:41Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
3D Gaussian Splatting (3DGS) allows for the compact encoding of both 3D geometry and scene appearance with its spatial features.
We propose distilling dense keypoint descriptors into 3DGS to improve the model's spatial understanding.
Our approach surpasses state-of-the-art Neural Render Pose (NRP) methods, including NeRFMatch and PNeRFLoc.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3D Gaussian Splatting has greatly accelerated rendering speed of novel view synthesis.
The explicit representation of 3D Gaussian Splatting facilitates editing tasks like dynamic reconstruction, geometry editing, and physical simulation.
We present a literature review of recent 3D Gaussian Splatting methods, which can be roughly classified into 3D reconstruction, 3D editing, and other downstream applications.
arXiv Detail & Related papers (2024-03-17T07:57:08Z) - GS-CLIP: Gaussian Splatting for Contrastive Language-Image-3D
Pretraining from Real-World Data [73.06536202251915]
3D Shape represented as point cloud has achieve advancements in multimodal pre-training to align image and language descriptions.
We propose GS-CLIP for the first attempt to introduce 3DGS into multimodal pre-training to enhance 3D representation.
arXiv Detail & Related papers (2024-02-09T05:46:47Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - Text-to-3D using Gaussian Splatting [18.163413810199234]
This paper proposes GSGEN, a novel method that adopts Gaussian Splatting, a recent state-of-the-art representation, to text-to-3D generation.
GSGEN aims at generating high-quality 3D objects and addressing existing shortcomings by exploiting the explicit nature of Gaussian Splatting.
Our approach can generate 3D assets with delicate details and accurate geometry.
arXiv Detail & Related papers (2023-09-28T16:44:31Z) - Weakly Supervised 3D Object Detection with Multi-Stage Generalization [62.96670547848691]
We introduce BA$2$-Det, encompassing pseudo label generation and multi-stage generalization.
We develop three stages of generalization: progressing from complete to partial, static to dynamic, and close to distant.
BA$2$-Det can achieve a 20% relative improvement on the KITTI dataset.
arXiv Detail & Related papers (2023-06-08T17:58:57Z) - SGAligner : 3D Scene Alignment with Scene Graphs [84.01002998166145]
Building 3D scene graphs has emerged as a topic in scene representation for several embodied AI applications.
We focus on the fundamental problem of aligning pairs of 3D scene graphs whose overlap can range from zero to partial.
We propose SGAligner, the first method for aligning pairs of 3D scene graphs that is robust to in-the-wild scenarios.
arXiv Detail & Related papers (2023-04-28T14:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.