3DGS-to-PC: Convert a 3D Gaussian Splatting Scene into a Dense Point Cloud or Mesh
- URL: http://arxiv.org/abs/2501.07478v1
- Date: Mon, 13 Jan 2025 16:52:28 GMT
- Title: 3DGS-to-PC: Convert a 3D Gaussian Splatting Scene into a Dense Point Cloud or Mesh
- Authors: Lewis A G Stuart, Michael P Pound,
- Abstract summary: 3DGS-to-PC is capable of transforming 3DGS scenes into dense, high-accuracy point clouds.
This package is highly customisable and capability of simple integration into existing 3DGS pipelines.
- Score: 0.552480439325792
- License:
- Abstract: 3D Gaussian Splatting (3DGS) excels at producing highly detailed 3D reconstructions, but these scenes often require specialised renderers for effective visualisation. In contrast, point clouds are a widely used 3D representation and are compatible with most popular 3D processing software, yet converting 3DGS scenes into point clouds is a complex challenge. In this work we introduce 3DGS-to-PC, a flexible and highly customisable framework that is capable of transforming 3DGS scenes into dense, high-accuracy point clouds. We sample points probabilistically from each Gaussian as a 3D density function. We additionally threshold new points using the Mahalanobis distance to the Gaussian centre, preventing extreme outliers. The result is a point cloud that closely represents the shape encoded into the 3D Gaussian scene. Individual Gaussians use spherical harmonics to adapt colours depending on view, and each point may contribute only subtle colour hints to the resulting rendered scene. To avoid spurious or incorrect colours that do not fit with the final point cloud, we recalculate Gaussian colours via a customised image rendering approach, assigning each Gaussian the colour of the pixel to which it contributes most across all views. 3DGS-to-PC also supports mesh generation through Poisson Surface Reconstruction, applied to points sampled from predicted surface Gaussians. This allows coloured meshes to be generated from 3DGS scenes without the need for re-training. This package is highly customisable and capability of simple integration into existing 3DGS pipelines. 3DGS-to-PC provides a powerful tool for converting 3DGS data into point cloud and surface-based formats.
Related papers
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - Compact 3D Scene Representation via Self-Organizing Gaussian Grids [10.816451552362823]
3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes.
We introduce a compact scene representation organizing the parameters of 3DGS into a 2D grid with local homogeneity.
Our method achieves a reduction factor of 17x to 42x in size for complex scenes with no increase in training time.
arXiv Detail & Related papers (2023-12-19T20:18:29Z) - BerfScene: Bev-conditioned Equivariant Radiance Fields for Infinite 3D
Scene Generation [96.58789785954409]
We propose a practical and efficient 3D representation that incorporates an equivariant radiance field with the guidance of a bird's-eye view map.
We produce large-scale, even infinite-scale, 3D scenes via synthesizing local scenes and then stitching them with smooth consistency.
arXiv Detail & Related papers (2023-12-04T18:56:10Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
We propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes.
Compared to the implicit NeRF representation, we show that the grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency.
arXiv Detail & Related papers (2023-12-01T17:09:31Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
We propose a learnable mask strategy to reduce the number of 3D Gaussian points without sacrificing performance.
We also propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2023-11-22T20:31:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.