論文の概要: Predicting Artificial Neural Network Representations to Learn Recognition Model for Music Identification from Brain Recordings
- arxiv url: http://arxiv.org/abs/2412.15560v1
- Date: Fri, 20 Dec 2024 04:37:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 19:50:48.653951
- Title: Predicting Artificial Neural Network Representations to Learn Recognition Model for Music Identification from Brain Recordings
- Title(参考訳): 脳記録からの楽曲識別のための認識モデル学習のためのニューラルネットワーク表現予測
- Authors: Taketo Akama, Zhuohao Zhang, Pengcheng Li, Kotaro Hongo, Hiroaki Kitano, Shun Minamikawa, Natalia Polouliakh,
- Abstract要約: 近年の研究では、人工ニューラルネットワーク(ANN)の表現が皮質表現と顕著に類似していることが示されている。
本研究では、外部聴覚刺激に応答して脳記録の認識モデルを開発するための新しいアプローチを提案する。
脳-コンピュータインターフェース(BCI)の進歩、ニューラルデコード技術、音楽認知の理解を約束します。
- 参考スコア(独自算出の注目度): 1.7021860383953338
- License:
- Abstract: Recent studies have demonstrated that the representations of artificial neural networks (ANNs) can exhibit notable similarities to cortical representations when subjected to identical auditory sensory inputs. In these studies, the ability to predict cortical representations is probed by regressing from ANN representations to cortical representations. Building upon this concept, our approach reverses the direction of prediction: we utilize ANN representations as a supervisory signal to train recognition models using noisy brain recordings obtained through non-invasive measurements. Specifically, we focus on constructing a recognition model for music identification, where electroencephalography (EEG) brain recordings collected during music listening serve as input. By training an EEG recognition model to predict ANN representations-representations associated with music identification-we observed a substantial improvement in classification accuracy. This study introduces a novel approach to developing recognition models for brain recordings in response to external auditory stimuli. It holds promise for advancing brain-computer interfaces (BCI), neural decoding techniques, and our understanding of music cognition. Furthermore, it provides new insights into the relationship between auditory brain activity and ANN representations.
- Abstract(参考訳): 近年の研究では、同一の聴覚感覚入力を受けると、人工ニューラルネットワーク(ANN)の表現が皮質表現と顕著な類似性を示すことが示されている。
本研究では、ANN表現から皮質表現への回帰によって、皮質表現を予測する能力について検討する。
我々はANN表現を監視信号として利用し、非侵襲的な計測によって得られたノイズの多い脳記録を用いて認識モデルを訓練する。
具体的には、音楽聴取中に収集した脳波(EEG)が入力として機能する音楽識別のための認識モデルの構築に焦点をあてる。
脳波認識モデルを用いて、音楽識別に関連するANN表現の予測を行い、分類精度を大幅に向上させた。
本研究では、外部聴覚刺激に応答して脳記録の認識モデルを開発するための新しいアプローチを提案する。
脳-コンピュータインターフェース(BCI)の進歩、ニューラルデコード技術、音楽認知の理解を約束します。
さらに、聴覚脳活動とANN表現の関係に関する新たな洞察を提供する。
関連論文リスト
- R&B -- Rhythm and Brain: Cross-subject Decoding of Music from Human Brain Activity [0.12289361708127873]
音楽は、文化全体にわたる人間の経験に大きな影響を及ぼす普遍的な現象である。
本研究では,音楽の知覚における機能的MRI(FMRI)を用いた人間の脳活動から,音楽の復号化が可能であるかを検討した。
論文 参考訳(メタデータ) (2024-06-21T17:11:45Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
我々は、神経科学に現代的な表現学習アプローチをもたらす頭蓋内記録のための再利用可能な変換器BrainBERTを開発した。
NLPや音声認識と同様に、この変換器は複雑な概念を高い精度で、はるかに少ないデータで分類することができる。
将来的には、表現学習を使用することで、はるかに多くの概念がニューラル録音から切り離され、言語モデルがアンロックされた言語のように脳をアンロックする可能性がある。
論文 参考訳(メタデータ) (2023-02-28T07:40:37Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
機能的脳活動から直接人間の視覚的注意を特徴付ける脳誘発対人視覚注意ネットワーク(BI-AVAN)を提案する。
本モデルは,人間の脳が監督されていない方法で焦点を絞った映画フレーム内の視覚的物体を識別・発見するために,注意関連・無視対象間の偏りのある競合過程を模倣する。
論文 参考訳(メタデータ) (2022-10-27T22:20:36Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
皮質補綴は視覚野に移植された装置で、電気的にニューロンを刺激することで失った視力を回復しようとする。
現在、これらのデバイスが提供する視覚は限られており、刺激による視覚知覚を正確に予測することはオープンな課題である。
我々は、視覚システムの有望なモデルとして登場した「脳様」畳み込みニューラルネットワーク(CNN)を活用することで、この問題に対処することを提案する。
論文 参考訳(メタデータ) (2022-09-27T17:33:19Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
我々は、自己教師型音声表現学習の進歩に乗じて、人間の聴覚システムの最先端モデルを作成する。
これらの結果から,ヒト大脳皮質における音声処理の異なる段階に関連する情報の階層構造を,自己教師型モデルで効果的に把握できることが示唆された。
論文 参考訳(メタデータ) (2022-05-27T22:04:02Z) - Enhancing Affective Representations of Music-Induced EEG through
Multimodal Supervision and latent Domain Adaptation [34.726185927120355]
脳波の重み付けとして音楽信号を用い,その意味的対応を共通の表現空間に投影することを目的としている。
我々は、LSTMに基づくアテンションモデルと、音楽タギングのための事前訓練されたモデルを組み合わせたバイモーダル・フレームワークと、その2つのモードの分布を整列するリバース・ドメイン・ディミネータを併用して、バイモーダル・フレームワークを利用する。
脳波入力クエリに関連音楽サンプルを提供することにより、モダリティのいずれからも、間接的に、教師付き予測を行うことで、感情認識に利用することができる。
論文 参考訳(メタデータ) (2022-02-20T07:32:12Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
我々はSwap-VAEと呼ばれる神経活動の不整合表現を学習するための新しい教師なしアプローチを導入する。
このアプローチは、生成モデリングフレームワークとインスタンス固有のアライメント損失を組み合わせたものです。
我々は、行動に関連付けられた関連する潜在次元に沿って、ニューラルネットワークをアンタングルする表現を構築することが可能であることを示す。
論文 参考訳(メタデータ) (2021-11-03T16:39:43Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
本稿では,学習可能なフィルタと事前決定された特徴抽出モジュールからなる新しい識別可能なEEGデコーディングパイプラインを提案する。
我々は,SEEDデータセットおよび前例のない大きさの新たな脳波データセット上で,脳波信号からの感情認識に向けたモデルの有用性を実証する。
発見された特徴は、以前の神経科学の研究と一致し、音楽聴取中の左右の時間領域間の機能的接続プロファイルの顕著な相違など、新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-10-19T14:22:04Z) - Visualizing and Understanding Vision System [0.6510507449705342]
視覚認識再構成ネットワーク (RRN) を用いて, 発達, 認識, 学習, 忘れるメカニズムについて検討する。
数値認識研究では、RRNが様々な視聴条件下でオブジェクト不変性表現を維持できるのを目撃する。
学習・忘れ研究において、本来のシナプス接続のパターン特異性を保ちつつ、全シナプスを低等級に調整することで、新規な構造認識を行う。
論文 参考訳(メタデータ) (2020-06-11T07:08:49Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。