Predicting Artificial Neural Network Representations to Learn Recognition Model for Music Identification from Brain Recordings
- URL: http://arxiv.org/abs/2412.15560v1
- Date: Fri, 20 Dec 2024 04:37:26 GMT
- Title: Predicting Artificial Neural Network Representations to Learn Recognition Model for Music Identification from Brain Recordings
- Authors: Taketo Akama, Zhuohao Zhang, Pengcheng Li, Kotaro Hongo, Hiroaki Kitano, Shun Minamikawa, Natalia Polouliakh,
- Abstract summary: Recent studies have demonstrated that the representations of artificial neural networks (ANNs) can exhibit notable similarities to cortical representations.
This study introduces a novel approach to developing recognition models for brain recordings in response to external auditory stimuli.
It holds promise for advancing brain-computer interfaces (BCI), neural decoding techniques, and our understanding of music cognition.
- Score: 1.7021860383953338
- License:
- Abstract: Recent studies have demonstrated that the representations of artificial neural networks (ANNs) can exhibit notable similarities to cortical representations when subjected to identical auditory sensory inputs. In these studies, the ability to predict cortical representations is probed by regressing from ANN representations to cortical representations. Building upon this concept, our approach reverses the direction of prediction: we utilize ANN representations as a supervisory signal to train recognition models using noisy brain recordings obtained through non-invasive measurements. Specifically, we focus on constructing a recognition model for music identification, where electroencephalography (EEG) brain recordings collected during music listening serve as input. By training an EEG recognition model to predict ANN representations-representations associated with music identification-we observed a substantial improvement in classification accuracy. This study introduces a novel approach to developing recognition models for brain recordings in response to external auditory stimuli. It holds promise for advancing brain-computer interfaces (BCI), neural decoding techniques, and our understanding of music cognition. Furthermore, it provides new insights into the relationship between auditory brain activity and ANN representations.
Related papers
- R&B -- Rhythm and Brain: Cross-subject Decoding of Music from Human Brain Activity [0.12289361708127873]
Music is a universal phenomenon that profoundly influences human experiences across cultures.
This study investigates whether music can be decoded from human brain activity measured with functional MRI (fMRI) during its perception.
arXiv Detail & Related papers (2024-06-21T17:11:45Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
We create a reusable Transformer, BrainBERT, for intracranial recordings bringing modern representation learning approaches to neuroscience.
Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, with higher accuracy and with much less data.
In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.
arXiv Detail & Related papers (2023-02-28T07:40:37Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
We propose a brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity.
Our model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner.
arXiv Detail & Related papers (2022-10-27T22:20:36Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
We capitalize on the progress of self-supervised speech representation learning to create new state-of-the-art models of the human auditory system.
We show that these results show that self-supervised models effectively capture the hierarchy of information relevant to different stages of speech processing in human cortex.
arXiv Detail & Related papers (2022-05-27T22:04:02Z) - Enhancing Affective Representations of Music-Induced EEG through
Multimodal Supervision and latent Domain Adaptation [34.726185927120355]
We employ music signals as a supervisory modality to EEG, aiming to project their semantic correspondence onto a common representation space.
We utilize a bi-modal framework by combining an LSTM-based attention model to process EEG and a pre-trained model for music tagging, along with a reverse domain discriminator to align the distributions of the two modalities.
The resulting framework can be utilized for emotion recognition both directly, by performing supervised predictions from either modality, and indirectly, by providing relevant music samples to EEG input queries.
arXiv Detail & Related papers (2022-02-20T07:32:12Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
We introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE.
Our approach combines a generative modeling framework with an instance-specific alignment loss.
We show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
arXiv Detail & Related papers (2021-11-03T16:39:43Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - Visualizing and Understanding Vision System [0.6510507449705342]
We use a vision recognition-reconstruction network (RRN) to investigate the development, recognition, learning and forgetting mechanisms.
In digit recognition study, we witness that the RRN could maintain object invariance representation under various viewing conditions.
In the learning and forgetting study, novel structure recognition is implemented by adjusting entire synapses in low magnitude while pattern specificities of original synaptic connectivity are preserved.
arXiv Detail & Related papers (2020-06-11T07:08:49Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.