DefFiller: Mask-Conditioned Diffusion for Salient Steel Surface Defect Generation
- URL: http://arxiv.org/abs/2412.15570v1
- Date: Fri, 20 Dec 2024 05:08:42 GMT
- Title: DefFiller: Mask-Conditioned Diffusion for Salient Steel Surface Defect Generation
- Authors: Yichun Tai, Zhenzhen Huang, Tao Peng, Zhijiang Zhang,
- Abstract summary: DefFiller is a mask-conditioned defect generation method that leverages a layout-to-image diffusion model.
We show that DefFiller produces high-quality defect images that accurately match the provided mask conditions.
- Score: 1.2362191015139727
- License:
- Abstract: Current saliency-based defect detection methods show promise in industrial settings, but the unpredictability of defects in steel production environments complicates dataset creation, hampering model performance. Existing data augmentation approaches using generative models often require pixel-level annotations, which are time-consuming and resource-intensive. To address this, we introduce DefFiller, a mask-conditioned defect generation method that leverages a layout-to-image diffusion model. DefFiller generates defect samples paired with mask conditions, eliminating the need for pixel-level annotations and enabling direct use in model training. We also develop an evaluation framework to assess the quality of generated samples and their impact on detection performance. Experimental results on the SD-Saliency-900 dataset demonstrate that DefFiller produces high-quality defect images that accurately match the provided mask conditions, significantly enhancing the performance of saliency-based defect detection models trained on the augmented dataset.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Bring the Power of Diffusion Model to Defect Detection [0.0]
diffusion probabilistic model (DDPM) is pre-trained to extract the features of denoising process to construct as a feature repository.
The queried latent features are reconstructed and filtered to obtain high-dimensional DDPM features.
Experiment results demonstrate that our method achieves competitive results on several industrial datasets.
arXiv Detail & Related papers (2024-08-25T14:28:49Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
We introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation.
Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model.
We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset.
arXiv Detail & Related papers (2024-07-04T14:28:52Z) - Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification [24.08402880603475]
We propose a test-time image adaptation method to enhance the accuracy of the model on test data.
We modify the target test images by projecting them back to the source domain using a diffusion model.
Our method makes the robustness more robust across various corruptions, architectures, and data regimes.
arXiv Detail & Related papers (2024-05-18T13:28:51Z) - Defect Image Sample Generation With Diffusion Prior for Steel Surface Defect Recognition [4.189885112658341]
Existing methods have investigated to enlarge the dataset by generating samples with generative models.
We propose Stable Surface Defect Generation (StableSDG), which transfers the vast generation distribution embedded in Stable Diffusion model for steel surface defect image generation.
We conduct extensive experiments on steel surface defect dataset, demonstrating state-of-the-art performance on generating high-quality samples and training recognition models.
arXiv Detail & Related papers (2024-05-03T06:03:37Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - DifFIQA: Face Image Quality Assessment Using Denoising Diffusion
Probabilistic Models [1.217503190366097]
Face image quality assessment (FIQA) techniques aim to mitigate these performance degradations.
We present a powerful new FIQA approach, named DifFIQA, which relies on denoising diffusion probabilistic models (DDPM)
Because the diffusion-based perturbations are computationally expensive, we also distill the knowledge encoded in DifFIQA into a regression-based quality predictor, called DifFIQA(R)
arXiv Detail & Related papers (2023-05-09T21:03:13Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.