Bring the Power of Diffusion Model to Defect Detection
- URL: http://arxiv.org/abs/2408.13845v1
- Date: Sun, 25 Aug 2024 14:28:49 GMT
- Title: Bring the Power of Diffusion Model to Defect Detection
- Authors: Xuyi Yu,
- Abstract summary: diffusion probabilistic model (DDPM) is pre-trained to extract the features of denoising process to construct as a feature repository.
The queried latent features are reconstructed and filtered to obtain high-dimensional DDPM features.
Experiment results demonstrate that our method achieves competitive results on several industrial datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the high complexity and technical requirements of industrial production processes, surface defects will inevitably appear, which seriously affects the quality of products. Although existing lightweight detection networks are highly efficient, they are susceptible to false or missed detection of non-salient defects due to the lack of semantic information. In contrast, the diffusion model can generate higher-order semantic representations in the denoising process. Therefore, the aim of this paper is to incorporate the higher-order modelling capability of the diffusion model into the detection model, so as to better assist in the classification and localization of difficult targets. First, the denoising diffusion probabilistic model (DDPM) is pre-trained to extract the features of denoising process to construct as a feature repository. In particular, to avoid the potential bottleneck of memory caused by the dataloader loading high-dimensional features, a residual convolutional variational auto-encoder (ResVAE) is designed to further compress the feature repository. The image is fed into both image backbone and feature repository for feature extraction and querying respectively. The queried latent features are reconstructed and filtered to obtain high-dimensional DDPM features. A dynamic cross-fusion method is proposed to fully refine the contextual features of DDPM to optimize the detection model. Finally, we employ knowledge distillation to migrate the higher-order modelling capabilities back into the lightweight baseline model without additional efficiency cost. Experiment results demonstrate that our method achieves competitive results on several industrial datasets.
Related papers
- Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification [24.08402880603475]
We propose a test-time image adaptation method to enhance the accuracy of the model on test data.
We modify the target test images by projecting them back to the source domain using a diffusion model.
Our method makes the robustness more robust across various corruptions, architectures, and data regimes.
arXiv Detail & Related papers (2024-05-18T13:28:51Z) - DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning [3.789219860006095]
We introduce a novel defect-generation method, named DDPM-MoCo, to address these issues.
Firstly, we utilize the Denoising Diffusion Probabilistic Model (DDPM) to generate high-quality defect data samples.
Secondly, we utilize the unsupervised learning Momentum Contrast model (MoCo) with an enhanced batch contrastive loss function for training the model on unlabeled data.
arXiv Detail & Related papers (2024-05-09T17:17:53Z) - PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction [5.06136344261226]
CNN-based methods for data fidelity enhancement rely on low-fidelity data patterns and distributions during the training phase.
Our proposed model - Physics-informed Residual Diffusion - demonstrates the capability to elevate the quality of data from both standard low-fidelity inputs.
Experimental results have shown that our approach can effectively reconstruct high-quality outcomes for two-dimensional turbulent flows without requiring retraining.
arXiv Detail & Related papers (2024-04-12T11:45:51Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.