論文の概要: Code Review Automation Via Multi-task Federated LLM -- An Empirical Study
- arxiv url: http://arxiv.org/abs/2412.15676v1
- Date: Fri, 20 Dec 2024 08:46:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:28.083790
- Title: Code Review Automation Via Multi-task Federated LLM -- An Empirical Study
- Title(参考訳): マルチタスクフェデレーションLDMによるコードレビュー自動化 - 実証的研究
- Authors: Jahnavi Kumar, Sridhar Chimalakonda,
- Abstract要約: 本研究は,2つの逐次法,1つの並列法,2つの累積法を含む,マルチタスクトレーニングのための5つの簡単な手法について検討した。
その結果,フェデレートされたLLM(FedLLM)をコードレビューのマルチタスクのユースケースで逐次トレーニングすることは,タスク毎に個別のモデルをトレーニングするよりも,時間,計算,パフォーマンスの指標の面で効率が低いことが示唆された。
- 参考スコア(独自算出の注目度): 4.8342038441006805
- License:
- Abstract: Code review is a crucial process before deploying code to production, as it validates the code, provides suggestions for improvements, and identifies errors such as missed edge cases. In projects with regular production releases, the effort required for peer code-reviews remains high. Consequently, there has been significant interest from software engineering (SE) researchers in automating the code review process. Previous research on code review automation has typically approached the task as three independent sub-tasks: review necessity prediction, review comment generation, and code refinement. Our study attempts to (i) leverage the relationships between the sub-tasks of code review automation, by developing a multi-task model that addresses all tasks in an integrated manner, and (ii) increase model robustness on unseen data via collaborative large language model (LLM) modeling, while retaining the proprietary nature of code, by using federated learning (FL). The study explores five simple techniques for multi-task training, including two sequential methods, one parallel method, and two cumulative methods. The results indicate that sequentially training a federated LLM (FedLLM) for our code review multi-task use case is less efficient in terms of time, computation, and performance metrics, compared to training separate models for each task. Because sequential training demonstrates catastrophic forgetting, alternatively cumulative fine-tuning for multi-task training performs better than training models for individual tasks. This study highlights the need for research focused on effective fine-tuning of multi-task FedLLMs for SE tasks.
- Abstract(参考訳): コードレビューは、コードを本番環境にデプロイする前に重要なプロセスであり、コードを検証し、改善の提案を提供し、失敗したエッジケースのようなエラーを特定する。
定期的な製品リリースのプロジェクトでは、ピアコードレビューに必要な労力は高いままです。
その結果、コードレビュープロセスを自動化することに、ソフトウェア工学(SE)研究者から大きな関心が寄せられている。
コードレビュー自動化に関するこれまでの研究は、通常、このタスクを3つの独立したサブタスクとしてアプローチしてきた。
私たちの研究は
二 コードレビュー自動化のサブタスク間の関係を利用して、すべてのタスクを統合的に処理するマルチタスクモデルを開発すること。
(II) 協調型大規模言語モデル(LLM)モデルを用いて, 協調型学習(FL)を用いて, コードの独自性を保ちながら, 目に見えないデータに対するモデルロバスト性を向上させる。
本研究は,2つの逐次法,1つの並列法,2つの累積法を含む,マルチタスクトレーニングのための5つの簡単な手法について検討した。
その結果,フェデレートされたLLM(FedLLM)をコードレビューのマルチタスクのユースケースで逐次トレーニングすることは,タスク毎に個別のモデルをトレーニングするよりも,時間,計算,パフォーマンスの指標の面で効率が低いことが示唆された。
シーケンシャルトレーニングは破滅的な忘れ込みを示すため、代わりにマルチタスクトレーニングの累積微調整は、個々のタスクのトレーニングモデルよりも優れている。
本研究は,SEタスクのためのマルチタスクFedLLMを効果的に微調整することに焦点を当てた研究の必要性を強調した。
関連論文リスト
- Improving the Learning of Code Review Successive Tasks with Cross-Task
Knowledge Distillation [1.0878040851638]
本研究では,これらのタスクを同時に処理するために,クロスタスク知識蒸留を利用した新しいディープラーニングアーキテクチャdisCOREVを紹介する。
提案手法は, BLEUスコアによる評価値と, CodeBLEUスコアによるより正確なコード修正値から, より良いレビューコメントを生成する。
論文 参考訳(メタデータ) (2024-02-03T07:02:22Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
事前学習言語モデル(LM)は、科学文献理解タスクにおいて有効であることを示す。
文献理解タスク間の共通知識共有を容易にするために,マルチタスクのコントラスト学習フレームワークであるSciMultを提案する。
論文 参考訳(メタデータ) (2023-05-23T16:47:22Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
マルチタスク学習は、複数の関連するソースタスクで強化することで、低リソースのターゲットタスクのトレーニングに広く使用されている。
マルチタスク学習における重要な問題は、ターゲットタスクに利益をもたらすソースタスクのサブセットを特定することである。
本稿では,サロゲートモデルを用いてこの問題に対処する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:16:11Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
マルチタスク学習の研究はコミュニティから大きな注目を集めている。
目覚ましい進歩にもかかわらず、異なるタスクを同時に学習するという課題はまだ検討されていない。
従来の研究は、異なるタスクから勾配を修正しようとするが、これらの手法はタスク間の関係の主観的な仮定を与え、修正された勾配はより正確でないかもしれない。
本稿では,タスク割り当てアプローチによってこの問題に対処する機構であるタスク割当(STA)を紹介し,各サンプルをランダムにタスクのサブセットに割り当てる。
さらなる進展のために、我々は全てのタスクを反復的に割り当てるためにInterleaved Task Allocation(ISTA)を提案する。
論文 参考訳(メタデータ) (2022-03-06T11:57:18Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
本稿では,多くの特殊マルチタスクを正規化の形式として解釈できることを示唆する理論解析について述べる。
標準正規化と安定化技術と組み合わせると、ユニタリスカラー化は複雑なマルチタスクの性能にマッチし、改善することを示す。
論文 参考訳(メタデータ) (2022-01-11T18:44:17Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - Boosting a Model Zoo for Multi-Task and Continual Learning [15.110807414130923]
モデル動物園」はモデルのアンサンブルを構築するアルゴリズムであり、それぞれが非常に小さく、小さなタスクセットで訓練されている。
モデルZooは,マルチタスクおよび連続学習における最先端手法と比較して,予測精度が大きく向上する。
論文 参考訳(メタデータ) (2021-06-06T04:25:09Z) - Leveraging Code Generation to Improve Code Retrieval and Summarization
via Dual Learning [18.354352985591305]
コード要約は、ソースコードスニペットが与えられた短い自然言語記述を生成し、コード検索は、自然言語クエリが与えられた関連するソースコードを取得する。
最近の研究は、これらの2つのタスクを組み合わせてパフォーマンスを改善している。
本稿では,新たなコード生成タスクを導入することによって,2つのタスクのエンド・ツー・エンド・モデルを提案する。
論文 参考訳(メタデータ) (2020-02-24T12:26:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。