GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observations
- URL: http://arxiv.org/abs/2412.15687v1
- Date: Fri, 20 Dec 2024 09:06:14 GMT
- Title: GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observations
- Authors: Mihai Alexe, Eulalie Boucher, Peter Lean, Ewan Pinnington, Patrick Laloyaux, Anthony McNally, Simon Lang, Matthew Chantry, Chris Burrows, Marcin Chrust, Florian Pinault, Ethel Villeneuve, Niels Bormann, Sean Healy,
- Abstract summary: GraphDOP learns the correlations between observed quantities and geophysical quantities of interest.
It is capable of producing skilful predictions of relevant weather parameters up to five days into the future.
- Score: 0.22824658065924633
- License:
- Abstract: We introduce GraphDOP, a new data-driven, end-to-end forecast system developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) that is trained and initialised exclusively from Earth System observations, with no physics-based (re)analysis inputs or feedbacks. GraphDOP learns the correlations between observed quantities - such as brightness temperatures from polar orbiters and geostationary satellites - and geophysical quantities of interest (that are measured by conventional observations), to form a coherent latent representation of Earth System state dynamics and physical processes, and is capable of producing skilful predictions of relevant weather parameters up to five days into the future.
Related papers
- Data driven weather forecasts trained and initialised directly from observations [1.44556167750856]
Skilful Machine Learned weather forecasts have challenged our approach to numerical weather prediction.
Data-driven systems have been trained to forecast future weather by learning from long historical records of past weather.
We propose a new approach, training a neural network to predict future weather purely from historical observations.
arXiv Detail & Related papers (2024-07-22T12:23:26Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We also introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Explainable Graph Neural Networks for Observation Impact Analysis in Atmospheric State Estimation [1.7410069559220338]
We integrate observation and Numerical Weather Prediction points into a meteorological graph, extracting $k$-hop subgraphs centered on NWP points.
Self-supervised GNNs are employed to estimate the atmospheric state by aggregating data within these $k$-hop radii.
The study applies gradient-based explainability methods to quantify the significance of different observations in the estimation process.
arXiv Detail & Related papers (2024-03-26T05:10:47Z) - CloudNine: Analyzing Meteorological Observation Impact on Weather
Prediction Using Explainable Graph Neural Networks [1.9019250262578853]
CloudNine'' allows analysis of individual observations' impacts on specific predictions based on explainable graph neural networks (XGNNs)
We provide a web application to search for observations in the 3D space of the Earth system and to visualize the impact of individual observations on predictions in specific spatial regions and time periods.
arXiv Detail & Related papers (2024-02-21T01:29:17Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Forecasting Global Weather with Graph Neural Networks [0.0]
We present a data-driven approach for forecasting global weather using graph neural networks.
The system learns to step forward the current 3D atmospheric state by six hours, and multiple steps are chained together to produce skillful forecasts going out several days into the future.
arXiv Detail & Related papers (2022-02-15T17:02:07Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - A Perspective on Gaussian Processes for Earth Observation [23.66931064985429]
Earth observation by airborne and satellite remote sensing and in-situ observations play a fundamental role in monitoring our planet.
Machine learning and Gaussian processes (GPs) in particular has attained outstanding results in the estimation of bio-geo-physical variables.
Despite great advances in forward and inverse modelling, GP models still have to face important challenges.
arXiv Detail & Related papers (2020-07-02T16:44:11Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.