論文の概要: The Role of Recurrency in Image Segmentation for Noisy and Limited Sample Settings
- arxiv url: http://arxiv.org/abs/2412.15734v1
- Date: Fri, 20 Dec 2024 09:55:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:21.498813
- Title: The Role of Recurrency in Image Segmentation for Noisy and Limited Sample Settings
- Title(参考訳): 雑音・限定サンプル設定における画像分割における再帰性の役割
- Authors: David Calhas, João Marques, Arlindo L. Oliveira,
- Abstract要約: フィードフォワードセグメンテーションモデル上に構築し、画像セグメンテーションのための複数のタイプの繰り返しを探索する。
これらのモデルを,高レベルのノイズと数ショットの学習環境の影響を解析しながら,人工的および医療的画像データ上で検証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The biological brain has inspired multiple advances in machine learning. However, most state-of-the-art models in computer vision do not operate like the human brain, simply because they are not capable of changing or improving their decisions/outputs based on a deeper analysis. The brain is recurrent, while these models are not. It is therefore relevant to explore what would be the impact of adding recurrent mechanisms to existing state-of-the-art architectures and to answer the question of whether recurrency can improve existing architectures. To this end, we build on a feed-forward segmentation model and explore multiple types of recurrency for image segmentation. We explore self-organizing, relational, and memory retrieval types of recurrency that minimize a specific energy function. In our experiments, we tested these models on artificial and medical imaging data, while analyzing the impact of high levels of noise and few-shot learning settings. Our results do not validate our initial hypothesis that recurrent models should perform better in these settings, suggesting that these recurrent architectures, by themselves, are not sufficient to surpass state-of-the-art feed-forward versions and that additional work needs to be done on the topic.
- Abstract(参考訳): 生物学的脳は、機械学習のいくつかの進歩に影響を与えた。
しかし、コンピュータビジョンにおける最先端のモデルの多くは、人間の脳のように動作しない。
脳はリカレントだが、これらのモデルはそうではない。
したがって、既存の最先端アーキテクチャにリカレントメカニズムを追加することの影響について検討し、リカレンシーが既存のアーキテクチャを改善することができるかどうかという疑問に答えることが重要である。
この目的のために、フィードフォワードセグメンテーションモデルを構築し、画像セグメンテーションのための複数のタイプの繰り返しを探索する。
エネルギー関数を最小化する自己組織型,リレーショナル型,メモリ検索型について検討する。
実験では,これらのモデルを,高レベルのノイズと数ショットの学習環境の影響を分析しながら,人工的および医療的画像データ上で実験した。
我々の結果は、繰り返しモデルがこれらの設定でより良い性能を発揮するべきだという最初の仮説を検証せず、これらの繰り返しアーキテクチャは、それ自体は最先端のフィードフォワードバージョンを超えるには不十分であり、そのトピックで追加の作業を行う必要があることを示唆している。
関連論文リスト
- When Medical Imaging Met Self-Attention: A Love Story That Didn't Quite Work Out [8.113092414596679]
2つの異なる医療データセットに異なる自己注意変異を持つ、広く採用されている2つの畳み込みアーキテクチャを拡張します。
完全畳み込みモデルに比べてバランスの取れた精度は著しく改善されていない。
また, 皮膚病変画像における皮膚内視鏡像などの重要な特徴は, 自己注意を用いても学ばないことが明らかとなった。
論文 参考訳(メタデータ) (2024-04-18T16:18:41Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Generative Models as a Complex Systems Science: How can we make sense of
large language model behavior? [75.79305790453654]
事前訓練されたモデルから望ましい振る舞いを排除し、望ましくないモデルを避けながら、NLPを再定義した。
言語モデルの振る舞いをタスク間性能を説明するカテゴリに分解する体系的な取り組みについて論じる。
論文 参考訳(メタデータ) (2023-07-31T22:58:41Z) - Multi-level Data Representation For Training Deep Helmholtz Machines [0.0]
我々は,Human Image Perception 機構を用いて,複雑な検索空間において,Helmholtz Machine と呼ばれる生物学的に妥当な生成モデルの学習を指導する。
我々は,マルチレベルデータ表現を用いて,異なる解像度の視覚的キューをネットワークの隠蔽層に提供することで,この問題を解決することを提案する。
いくつかの画像データセットの結果は、モデルがより優れた全体的な品質を得るだけでなく、生成された画像のより広範な多様性を得ることができることを示した。
論文 参考訳(メタデータ) (2022-10-26T16:55:40Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Understanding invariance via feedforward inversion of discriminatively
trained classifiers [30.23199531528357]
過去の研究では、出力ログに余計な視覚的詳細が残っていることが判明した。
極めて高い忠実度を再現するフィードフォワードインバージョンモデルを開発する。
私たちのアプローチはBigGANをベースにしており、1ホットクラスのラベルの代わりにロジットのコンディショニングを行います。
論文 参考訳(メタデータ) (2021-03-15T17:56:06Z) - Counterfactual Generative Networks [59.080843365828756]
画像生成過程を直接監督せずに訓練する独立した因果機構に分解することを提案する。
適切な誘導バイアスを活用することによって、これらのメカニズムは物体の形状、物体の質感、背景を解き放つ。
その結果, 偽画像は, 元の分類タスクにおける性能の低下を伴い, 分散性が向上することが示された。
論文 参考訳(メタデータ) (2021-01-15T10:23:12Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A
Comparative Study [43.26668942258135]
脳MRIにおけるunsupervised Anomaly Detection(UAD)の新しいアプローチ
これらの研究の主な原理は、正常なデータの圧縮と回復を学ぶことによって、正常な解剖学のモデルを学ぶことである。
概念は,医療画像分析のコミュニティにとって大きな関心事である。i) 膨大な量の手作業によるトレーニングデータの必要性から解放される。
論文 参考訳(メタデータ) (2020-04-07T11:12:07Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。