論文の概要: Extracting Interpretable Task-Specific Circuits from Large Language Models for Faster Inference
- arxiv url: http://arxiv.org/abs/2412.15750v1
- Date: Fri, 20 Dec 2024 10:11:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:23:15.780131
- Title: Extracting Interpretable Task-Specific Circuits from Large Language Models for Faster Inference
- Title(参考訳): 高速推論のための大規模言語モデルからの解釈可能なタスク特化回路の抽出
- Authors: Jorge García-Carrasco, Alejandro Maté, Juan Trujillo,
- Abstract要約: 大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
対象タスクを適切に実行するLLMのサブセットを自動的に抽出する新しい手法を提案する。
得られたモデルはかなり小さく、パラメータの数を82.77%まで減らし、(ii)より解釈可能であることを示す。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: Large Language Models (LLMs) have shown impressive performance across a wide range of tasks. However, the size of LLMs is steadily increasing, hindering their application on computationally constrained environments. On the other hand, despite their general capabilities, there are many situations where only one specific task is performed, rendering all other capabilities unnecessary and wasteful. This leads us to the following question: Is it possible to extract the minimal subset from an LLM that is able to perform a specific task in a faster, standalone manner? Recent works on Mechanistic Interpretability (MI) have shown that specific tasks are performed by a localized subset of components, or circuit. However, current techniques used to identify the circuit cannot be used to extract it for its standalone usage. In this work, we propose a novel approach to automatically extract the subset of the LLM that properly performs a targeted task requiring no additional training and a small amount of data samples. We evaluate our approach on different tasks and show that the resulting models are (i) considerably smaller, reducing the number of parameters up to 82.77% and (ii) more interpretable, as they focus on the circuit that is used to carry out the specific task, and can therefore be understood using MI techniques.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
しかし、LLMのサイズは着実に増加しており、計算に制約のある環境への適用を妨げている。
一方、一般的な機能にもかかわらず、1つの特定のタスクのみを実行し、他のすべての機能を不要かつ無駄にする状況が数多く存在する。
より高速でスタンドアローンな方法で特定のタスクを実行することができるLLMから最小限のサブセットを抽出することは可能ですか?
メカニスティック・インタプリタビリティ(MI)に関する最近の研究は、特定のタスクがコンポーネントや回路の局所化されたサブセットによって実行されることを示した。
しかし、回路を識別するために使われている現在の技術は、そのスタンドアロン使用のために抽出するためには使用できない。
本研究では,LLMのサブセットを自動的に抽出する新たな手法を提案する。
我々は、異なるタスクに対するアプローチを評価し、結果のモデルが正しいことを示す。
(i)かなり小さく、パラメータ数が82.77%まで減少する。
(二)より解釈可能で、特定のタスクを実行するのに使用される回路に焦点を合わせ、そのためMI技術を用いて理解することができる。
関連論文リスト
- Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
本研究では,関数呼び出しにおいて,より小さな言語モデルを訓練するための新しいフレームワークを提案する。
特定の論理的および数学的推論タスクに焦点を当てている。
このアプローチは,関数呼び出しによるこれらのタスクの小型モデルの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-24T16:27:35Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
textbfGPTスケールモデルをマージするための textbfModel textbfExclusive textbfTask textbfArithmetic を提案する。
提案するMetaGPTは,データに依存しず,検索処理を回避し,低コストで実装が容易なメタGPTである。
論文 参考訳(メタデータ) (2024-06-17T10:12:45Z) - Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks [22.66167973623777]
LLM(Large Language Models)は、ICL(In-context Learning)機能によってNLPを変換した。
本稿では,予め定義されたタスクのラベル付き例から新しいタスクまで,LLMが一般化できるかどうかを検討する。
LLaMA-2 7Bは107%, LLaMA-2 13Bは18.6%, GPT3.5は3.2%であった。
論文 参考訳(メタデータ) (2024-05-17T05:20:49Z) - Cross-Task Affinity Learning for Multitask Dense Scene Predictions [5.939164722752263]
マルチタスク学習(MTL)は,複数のタスクを同時に予測する能力で注目されている。
マルチタスクネットワークにおけるタスク改善を強化する軽量フレームワークであるクロスタスク親和性学習(CTAL)モジュールを紹介する。
以上の結果から,CNNとトランスフォーマーの両バックボーンに対して,シングルタスク学習よりもはるかに少ないパラメータを用いて,最先端のMTL性能を実証した。
論文 参考訳(メタデータ) (2024-01-20T05:31:47Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - DiSparse: Disentangled Sparsification for Multitask Model Compression [92.84435347164435]
DiSparseは、シンプルで効果的で、第一級のマルチタスクプルーニングとスパーストレーニングスキームである。
実験の結果,様々な設定や設定において優れた性能を示した。
論文 参考訳(メタデータ) (2022-06-09T17:57:46Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
本研究では,Mixture-of-Experts (MoE) がマルチタスク学習を改善するかを検討した。
タスク認識ゲーティング関数を考案し、異なるタスクから専門の専門家にサンプルをルーティングする。
これにより、多数のパラメータを持つ疎活性化マルチタスクモデルが得られるが、高密度モデルの計算コストは同じである。
論文 参考訳(メタデータ) (2022-04-16T00:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。