Sparse Point Clouds Assisted Learned Image Compression
- URL: http://arxiv.org/abs/2412.15752v1
- Date: Fri, 20 Dec 2024 10:14:12 GMT
- Title: Sparse Point Clouds Assisted Learned Image Compression
- Authors: Yiheng Jiang, Haotian Zhang, Li Li, Dong Liu, Zhu Li,
- Abstract summary: We propose a new framework that uses sparse point clouds to assist in learned image compression in the autonomous driving scenario.
Our proposed framework is compatible with various mainstream learned image compression models, and we validate our approach using different existing image compression methods.
- Score: 22.991782666573933
- License:
- Abstract: In the field of autonomous driving, a variety of sensor data types exist, each representing different modalities of the same scene. Therefore, it is feasible to utilize data from other sensors to facilitate image compression. However, few techniques have explored the potential benefits of utilizing inter-modality correlations to enhance the image compression performance. In this paper, motivated by the recent success of learned image compression, we propose a new framework that uses sparse point clouds to assist in learned image compression in the autonomous driving scenario. We first project the 3D sparse point cloud onto a 2D plane, resulting in a sparse depth map. Utilizing this depth map, we proceed to predict camera images. Subsequently, we use these predicted images to extract multi-scale structural features. These features are then incorporated into learned image compression pipeline as additional information to improve the compression performance. Our proposed framework is compatible with various mainstream learned image compression models, and we validate our approach using different existing image compression methods. The experimental results show that incorporating point cloud assistance into the compression pipeline consistently enhances the performance.
Related papers
- Point Cloud-Assisted Neural Image Compression [35.46346027449056]
In this paper, we increase image compression performance with the assistance of point cloud.
We propose the point cloud-assisted neural image (PCA-NIC) to enhance the preservation of image texture and structure.
Our work is the first to improve image compression performance using point cloud and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-12-16T13:44:26Z) - 3D Point Cloud Compression with Recurrent Neural Network and Image
Compression Methods [0.0]
Storing and transmitting LiDAR point cloud data is essential for many AV applications.
Due to the sparsity and unordered structure of the data, it is difficult to compress point cloud data to a low volume.
We propose a new 3D-to-2D transformation which allows compression algorithms to efficiently exploit spatial correlations.
arXiv Detail & Related papers (2024-02-18T19:08:19Z) - Deep learning based Image Compression for Microscopy Images: An
Empirical Study [3.915183869199319]
This study analyzes classic and deep learning based image compression methods, and their impact on deep learning based image processing models.
To compress images in such a wanted way, multiple classical lossy image compression techniques are compared to several AI-based compression models.
We found that AI-based compression techniques largely outperform the classic ones and will minimally affect the downstream label-free task in 2D cases.
arXiv Detail & Related papers (2023-11-02T16:00:32Z) - Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training [90.76576712433595]
Applying lossy compression on images processed by deep neural networks can lead to significant accuracy degradation.
Inspired by the curriculum learning paradigm, we present a novel training approach called curriculum pre-training (CPT) for crowd counting on compressed images.
arXiv Detail & Related papers (2022-08-15T08:43:21Z) - Optimizing Image Compression via Joint Learning with Denoising [49.83680496296047]
High levels of noise usually exist in today's captured images due to the relatively small sensors equipped in the smartphone cameras.
We propose a novel two-branch, weight-sharing architecture with plug-in feature denoisers to allow a simple and effective realization of the goal with little computational cost.
arXiv Detail & Related papers (2022-07-22T04:23:01Z) - RIDDLE: Lidar Data Compression with Range Image Deep Delta Encoding [21.70770383279559]
Lidars are depth measuring sensors widely used in autonomous driving and augmented reality.
Large volume of data produced by lidars can lead to high costs in data storage and transmission.
We propose a novel data-driven range image compression algorithm, named RIDDLE (Range Image Deep DeLta.
arXiv Detail & Related papers (2022-06-02T21:53:43Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
In this paper, we propose an enhanced Invertible.
Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression.
Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2021-08-08T17:32:10Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.