Deep learning based Image Compression for Microscopy Images: An
Empirical Study
- URL: http://arxiv.org/abs/2311.01352v2
- Date: Tue, 16 Jan 2024 11:32:48 GMT
- Title: Deep learning based Image Compression for Microscopy Images: An
Empirical Study
- Authors: Yu Zhou, Jan Sollmann, Jianxu Chen
- Abstract summary: This study analyzes classic and deep learning based image compression methods, and their impact on deep learning based image processing models.
To compress images in such a wanted way, multiple classical lossy image compression techniques are compared to several AI-based compression models.
We found that AI-based compression techniques largely outperform the classic ones and will minimally affect the downstream label-free task in 2D cases.
- Score: 3.915183869199319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the fast development of modern microscopes and bioimaging techniques, an
unprecedentedly large amount of imaging data are being generated, stored,
analyzed, and even shared through networks. The size of the data poses great
challenges for current data infrastructure. One common way to reduce the data
size is by image compression. This present study analyzes classic and deep
learning based image compression methods, and their impact on deep learning
based image processing models. Deep learning based label-free prediction models
(i.e., predicting fluorescent images from bright field images) are used as an
example application for comparison and analysis. Effective image compression
methods could help reduce the data size significantly without losing necessary
information, and therefore reduce the burden on data management infrastructure
and permit fast transmission through the network for data sharing or cloud
computing. To compress images in such a wanted way, multiple classical lossy
image compression techniques are compared to several AI-based compression
models provided by and trained with the CompressAI toolbox using python. These
different compression techniques are compared in compression ratio, multiple
image similarity measures and, most importantly, the prediction accuracy from
label-free models on compressed images. We found that AI-based compression
techniques largely outperform the classic ones and will minimally affect the
downstream label-free task in 2D cases. In the end, we hope the present study
could shed light on the potential of deep learning based image compression and
the impact of image compression on downstream deep learning based image
analysis models.
Related papers
- Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Machine Perception-Driven Image Compression: A Layered Generative
Approach [32.23554195427311]
layered generative image compression model is proposed to achieve high human vision-oriented image reconstructed quality.
Task-agnostic learning-based compression model is proposed, which effectively supports various compressed domain-based analytical tasks.
Joint optimization schedule is adopted to acquire best balance point among compression ratio, reconstructed image quality, and downstream perception performance.
arXiv Detail & Related papers (2023-04-14T02:12:38Z) - Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training [90.76576712433595]
Applying lossy compression on images processed by deep neural networks can lead to significant accuracy degradation.
Inspired by the curriculum learning paradigm, we present a novel training approach called curriculum pre-training (CPT) for crowd counting on compressed images.
arXiv Detail & Related papers (2022-08-15T08:43:21Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
We present a unified study of the effects of JPEG compression on a range of common tasks and datasets.
We show that there is a significant penalty on common performance metrics for high compression.
arXiv Detail & Related papers (2020-11-17T20:32:57Z) - Deep data compression for approximate ultrasonic image formation [1.0266286487433585]
In ultrasonic imaging systems, data acquisition and image formation are performed on separate computing devices.
Deep neural networks are optimized to preserve the image quality of a particular image formation method.
arXiv Detail & Related papers (2020-09-04T16:43:12Z) - Distributed Learning and Inference with Compressed Images [40.07509530656681]
This paper focuses on vision-based perception for autonomous driving as a paradigmatic scenario.
We propose dataset restoration, based on image restoration with generative adversarial networks (GANs)
Our method is agnostic to both the particular image compression method and the downstream task.
arXiv Detail & Related papers (2020-04-22T11:20:53Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.