Probabilistic Latent Variable Modeling for Dynamic Friction Identification and Estimation
- URL: http://arxiv.org/abs/2412.15756v1
- Date: Fri, 20 Dec 2024 10:16:18 GMT
- Title: Probabilistic Latent Variable Modeling for Dynamic Friction Identification and Estimation
- Authors: Victor Vantilborgh, Sander De Witte, Frederik Ostyn, Tom Lefebvre, Guillaume Crevecoeur,
- Abstract summary: Identification of dynamic models in robotics is essential to support control design, friction compensation, output torque estimation.
We propose to account for unidentified dynamics in the robot joints using latent dynamic states.
We use the Expectation-Maximisation (EM) algorithm to find a Likelihood Maximum Estimate (MLE) of the model parameters.
- Score: 2.638878351659023
- License:
- Abstract: Precise identification of dynamic models in robotics is essential to support control design, friction compensation, output torque estimation, etc. A longstanding challenge remains in the identification of friction models for robotic joints, given the numerous physical phenomena affecting the underlying friction dynamics which result into nonlinear characteristics and hysteresis behaviour in particular. These phenomena proof difficult to be modelled and captured accurately using physical analogies alone. This has motivated researchers to shift from physics-based to data-driven models. Currently, these methods are still limited in their ability to generalize effectively to typical industrial robot deployement, characterized by high- and low-velocity operations and frequent direction reversals. Empirical observations motivate the use of dynamic friction models but these remain particulary challenging to establish. To address the current limitations, we propose to account for unidentified dynamics in the robot joints using latent dynamic states. The friction model may then utilize both the dynamic robot state and additional information encoded in the latent state to evaluate the friction torque. We cast this stochastic and partially unsupervised identification problem as a standard probabilistic representation learning problem. In this work both the friction model and latent state dynamics are parametrized as neural networks and integrated in the conventional lumped parameter dynamic robot model. The complete dynamics model is directly learned from the noisy encoder measurements in the robot joints. We use the Expectation-Maximisation (EM) algorithm to find a Maximum Likelihood Estimate (MLE) of the model parameters. The effectiveness of the proposed method is validated in terms of open-loop prediction accuracy in comparison with baseline methods, using the Kuka KR6 R700 as a test platform.
Related papers
- Learning-based adaption of robotic friction models [48.453527255659296]
We introduce a novel approach to adapt an existing friction model to new dynamics using as little data as possible.
Our proposed estimator outperforms the conventional model-based approach and the base neural network significantly.
Our method does not rely on data with external load during training, eliminating the need for external torque sensors.
arXiv Detail & Related papers (2023-10-25T14:50:15Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - STEADY: Simultaneous State Estimation and Dynamics Learning from
Indirect Observations [17.86873192361793]
Many state-of-the-art approaches in learning kinodynamic models require precise measurements of robot states as labeled input/output examples.
We propose a new technique for learning neural kinodynamic models by performing simultaneous state estimation and dynamics learning.
Our approach achieves significantly higher accuracy but is also more robust to observation noise, thereby showing promise for boosting the performance of many other robotics applications.
arXiv Detail & Related papers (2022-03-02T18:25:56Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Action-Conditional Recurrent Kalman Networks For Forward and Inverse
Dynamics Learning [17.80270555749689]
Estimating accurate forward and inverse dynamics models is a crucial component of model-based control for robots.
We present two architectures for forward model learning and one for inverse model learning.
Both architectures significantly outperform exist-ing model learning frameworks as well as analytical models in terms of prediction performance.
arXiv Detail & Related papers (2020-10-20T11:28:25Z) - Prediction with Approximated Gaussian Process Dynamical Models [7.678864239473703]
We present approximated GPDMs which are Markov and analyze their control theoretical properties.
The outcomes are illustrated with numerical examples that show the power of the approximated models.
arXiv Detail & Related papers (2020-06-25T16:51:17Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.