Bi-directional Mapping of Morphology Metrics and 3D City Blocks for Enhanced Characterization and Generation of Urban Form
- URL: http://arxiv.org/abs/2412.15801v1
- Date: Fri, 20 Dec 2024 11:22:55 GMT
- Title: Bi-directional Mapping of Morphology Metrics and 3D City Blocks for Enhanced Characterization and Generation of Urban Form
- Authors: Chenyi Cai, Biao Li, Qiyan Zhang, Xiao Wang, Filip Biljecki, Pieter Herthogs,
- Abstract summary: Urban morphology, examining city spatial configurations, links urban design to sustainability.
A critical gap remains between performance evaluation and complex urban form generation, caused by the disconnection between morphology metrics and urban form.
This paper highlights the importance of establishing a bi-directional mapping between morphology metrics and complex urban form.
We present an approach that can 1) formulate morphology metrics to both characterize urban forms and in reverse, retrieve diverse similar 3D urban forms, and 2) evaluate the effectiveness of morphology metrics in representing 3D urban form characteristics of blocks by comparison.
- Score: 8.488938959273126
- License:
- Abstract: Urban morphology, examining city spatial configurations, links urban design to sustainability. Morphology metrics play a fundamental role in performance-driven computational urban design (CUD) which integrates urban form generation, performance evaluation and optimization. However, a critical gap remains between performance evaluation and complex urban form generation, caused by the disconnection between morphology metrics and urban form, particularly in metric-to-form workflows. It prevents the application of optimized metrics to generate improved urban form with enhanced urban performance. Formulating morphology metrics that not only effectively characterize complex urban forms but also enable the reconstruction of diverse forms is of significant importance. This paper highlights the importance of establishing a bi-directional mapping between morphology metrics and complex urban form to enable the integration of urban form generation with performance evaluation. We present an approach that can 1) formulate morphology metrics to both characterize urban forms and in reverse, retrieve diverse similar 3D urban forms, and 2) evaluate the effectiveness of morphology metrics in representing 3D urban form characteristics of blocks by comparison. We demonstrate the methodology with 3D urban models of New York City, covering 14,248 blocks. We use neural networks and information retrieval for morphology metric encoding, urban form clustering and morphology metric evaluation. We identified an effective set of morphology metrics for characterizing block-scale urban forms through comparison. The proposed methodology tightly couples complex urban forms with morphology metrics, hence it can enable a seamless and bidirectional relationship between urban form generation and optimization in performance-driven urban design towards sustainable urban design and planning.
Related papers
- Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)
We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.
Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
Urban4D is a semantic-guided decomposition strategy inspired by advances in deep 2D semantic map generation.
Our approach distinguishes potentially dynamic objects through reliable semantic Gaussians.
Experiments on real-world datasets demonstrate that Urban4D achieves comparable or better quality than previous state-of-the-art methods.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Generative methods for Urban design and rapid solution space exploration [13.222198221605701]
This research introduces an implementation of a tensor-field-based generative urban modeling toolkit.
Our method encodes contextual constraints such as waterfront edges, terrain, view-axis, existing streets, landmarks, and non-geometric design inputs.
This allows users to generate many, diverse urban fabric configurations that resemble real-world cities with very few model inputs.
arXiv Detail & Related papers (2022-12-13T17:58:02Z) - MetroGAN: Simulating Urban Morphology with Generative Adversarial
Network [10.504296192020497]
We propose a GAN framework with geographical knowledge, namely Metropolitan GAN (MetroGAN) for urban morphology simulation.
Results show that MetroGAN outperforms the state-of-the-art urban simulation methods by over 20% in all metrics.
arXiv Detail & Related papers (2022-07-06T11:02:24Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects.
A benchmark contains over 17,000 action trajectories with six types of plush toys and 78 variants.
Our model achieves the best performance in geometry, correspondence, and dynamics predictions.
arXiv Detail & Related papers (2022-03-14T04:56:55Z) - Deep Learning for Spatiotemporal Modeling of Urbanization [21.677957140614556]
Urbanization has a strong impact on the health and wellbeing of populations across the world.
Many spatial models have been developed using machine learning and numerical modeling techniques.
Here we explore the capacity of deep spatial learning for the predictive modeling of urbanization.
arXiv Detail & Related papers (2021-12-17T18:27:52Z) - GANs for Urban Design [0.0]
The topic investigated in this paper is the application of Generative Adversarial Networks to the design of an urban block.
The research presents a flexible model able to adapt to the morphological characteristics of a city.
arXiv Detail & Related papers (2021-05-04T19:50:24Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Emergent Hand Morphology and Control from Optimizing Robust Grasps of
Diverse Objects [63.89096733478149]
We introduce a data-driven approach where effective hand designs naturally emerge for the purpose of grasping diverse objects.
We develop a novel Bayesian Optimization algorithm that efficiently co-designs the morphology and grasping skills jointly.
We demonstrate the effectiveness of our approach in discovering robust and cost-efficient hand morphologies for grasping novel objects.
arXiv Detail & Related papers (2020-12-22T17:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.