Measuring Cross-Modal Interactions in Multimodal Models
- URL: http://arxiv.org/abs/2412.15828v2
- Date: Tue, 28 Jan 2025 20:32:51 GMT
- Title: Measuring Cross-Modal Interactions in Multimodal Models
- Authors: Laura Wenderoth, Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik,
- Abstract summary: Existing AI methods fail to capture cross-modal interactions crucial for understanding the combined impact of multiple data sources.<n>This paper introduces InterSHAP, a cross-modal interaction score that addresses the limitations of existing approaches.<n>We show that InterSHAP accurately measures the presence of cross-modal interactions, can handle multiple modalities, and provides detailed explanations at a local level for individual samples.
- Score: 9.862551438475666
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Integrating AI in healthcare can greatly improve patient care and system efficiency. However, the lack of explainability in AI systems (XAI) hinders their clinical adoption, especially in multimodal settings that use increasingly complex model architectures. Most existing XAI methods focus on unimodal models, which fail to capture cross-modal interactions crucial for understanding the combined impact of multiple data sources. Existing methods for quantifying cross-modal interactions are limited to two modalities, rely on labelled data, and depend on model performance. This is problematic in healthcare, where XAI must handle multiple data sources and provide individualised explanations. This paper introduces InterSHAP, a cross-modal interaction score that addresses the limitations of existing approaches. InterSHAP uses the Shapley interaction index to precisely separate and quantify the contributions of the individual modalities and their interactions without approximations. By integrating an open-source implementation with the SHAP package, we enhance reproducibility and ease of use. We show that InterSHAP accurately measures the presence of cross-modal interactions, can handle multiple modalities, and provides detailed explanations at a local level for individual samples. Furthermore, we apply InterSHAP to multimodal medical datasets and demonstrate its applicability for individualised explanations.
Related papers
- NEARL-CLIP: Interacted Query Adaptation with Orthogonal Regularization for Medical Vision-Language Understanding [51.63264715941068]
textbfNEARL-CLIP (iunderlineNteracted quunderlineEry underlineAdaptation with ounderlineRthogonaunderlineL Regularization) is a novel cross-modality interaction VLM-based framework.
arXiv Detail & Related papers (2025-08-06T05:44:01Z) - MultiSHAP: A Shapley-Based Framework for Explaining Cross-Modal Interactions in Multimodal AI Models [5.011371514152517]
Multimodal AI models have achieved impressive performance in tasks that require integrating information from multiple modalities, such as vision and language.<n>How to explain cross-modal interactions in multimodal AI models remains a major challenge.
arXiv Detail & Related papers (2025-08-01T12:19:18Z) - Cross-Sequence Semi-Supervised Learning for Multi-Parametric MRI-Based Visual Pathway Delineation [18.101169568060786]
We propose a novel semi-supervised multi-parametric feature decomposition framework for VP delineation.<n>Specifically, a correlation-constrained feature decomposition (CFD) is designed to handle the complex cross-sequence relationships.<n>We validate our framework using two public datasets, and one in-house Multi-Shell Diffusion MRI (MDM) dataset.
arXiv Detail & Related papers (2025-05-26T09:18:58Z) - Completed Feature Disentanglement Learning for Multimodal MRIs Analysis [36.32164729310868]
Feature disentanglement (FD)-based methods have achieved significant success in multimodal learning (MML)
We propose a novel Complete Feature Disentanglement (CFD) strategy that recovers the lost information during feature decoupling.
Specifically, the CFD strategy not only identifies modality-shared and modality-specific features, but also decouples shared features among subsets of multimodal inputs.
arXiv Detail & Related papers (2024-07-06T01:49:38Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems.
This paper proposes an MMER method that relies on a joint multimodal transformer (JMT) for fusion with key-based cross-attention.
arXiv Detail & Related papers (2024-03-15T17:23:38Z) - MMoE: Enhancing Multimodal Models with Mixtures of Multimodal Interaction Experts [92.76662894585809]
We introduce an approach to enhance multimodal models, which we call Multimodal Mixtures of Experts (MMoE)
MMoE is able to be applied to various types of models to gain improvement.
arXiv Detail & Related papers (2023-11-16T05:31:21Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Audio-Visual Fusion for Emotion Recognition in the Valence-Arousal Space
Using Joint Cross-Attention [15.643176705932396]
We introduce a joint cross-attentional model for A-V fusion that extracts the salient features across A-V modalities.
It computes the cross-attention weights based on correlation between the joint feature representation and that of the individual modalities.
Results indicate that our joint cross-attentional A-V fusion model provides a cost-effective solution that can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-09-19T15:01:55Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
We propose a novel method, dubbed Cross-Modal Info-Max Hashing (CMIMH)
We learn informative representations that can preserve both intra- and inter-modal similarities.
The proposed method consistently outperforms other state-of-the-art cross-modal retrieval methods.
arXiv Detail & Related papers (2021-12-13T08:58:03Z) - Hybrid Contrastive Learning of Tri-Modal Representation for Multimodal
Sentiment Analysis [18.4364234071951]
We propose a novel framework HyCon for hybrid contrastive learning of tri-modal representation.
Specifically, we simultaneously perform intra-/inter-modal contrastive learning and semi-contrastive learning.
Our proposed method outperforms existing works.
arXiv Detail & Related papers (2021-09-04T06:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.