論文の概要: Data-Centric Improvements for Enhancing Multi-Modal Understanding in Spoken Conversation Modeling
- arxiv url: http://arxiv.org/abs/2412.15995v1
- Date: Fri, 20 Dec 2024 15:43:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:44.695855
- Title: Data-Centric Improvements for Enhancing Multi-Modal Understanding in Spoken Conversation Modeling
- Title(参考訳): 音声対話モデルにおけるマルチモーダル理解の強化のためのデータ中心的改善
- Authors: Maximillian Chen, Ruoxi Sun, Sercan Ö. Arık,
- Abstract要約: 本稿では,対話型音声モデリングにおけるマルチモーダル理解の効率化を目的とした,データ中心のカスタマイズ手法を提案する。
提案手法は,オープンウェイトモデルを用いたトレーニングデータの10%のみを用いて,Spken-SQuADベンチマークの最先端性能を実現する。
また、あいまいなユーザ要求と動的評価入力を備えたマルチターン音声対話のための最初のデータセットであるASK-QAを導入する。
- 参考スコア(独自算出の注目度): 13.628984890958314
- License:
- Abstract: Conversational assistants are increasingly popular across diverse real-world applications, highlighting the need for advanced multimodal speech modeling. Speech, as a natural mode of communication, encodes rich user-specific characteristics such as speaking rate and pitch, making it critical for effective interaction. Our work introduces a data-centric customization approach for efficiently enhancing multimodal understanding in conversational speech modeling. Central to our contributions is a novel multi-task learning paradigm that involves designing auxiliary tasks to utilize a small amount of speech data. Our approach achieves state-of-the-art performance on the Spoken-SQuAD benchmark, using only 10% of the training data with open-weight models, establishing a robust and efficient framework for audio-centric conversational modeling. We also introduce ASK-QA, the first dataset for multi-turn spoken dialogue with ambiguous user requests and dynamic evaluation inputs. Code and data forthcoming.
- Abstract(参考訳): 会話アシスタントは様々な現実世界のアプリケーションで人気が高まり、高度なマルチモーダル音声モデリングの必要性を強調している。
音声は、自然なコミュニケーションのモードとして、発話率やピッチなどのリッチなユーザ固有の特徴を符号化し、効果的な対話に欠かせない。
本研究では,対話型音声モデリングにおけるマルチモーダル理解の効率化を目的とした,データ中心のカスタマイズ手法を提案する。
我々の貢献の中心は、少量の音声データを利用する補助的なタスクを設計する、新しいマルチタスク学習パラダイムである。
提案手法は,オープンウェイトモデルを用いたトレーニングデータの10%しか使用せず,音声中心の対話型モデリングのための堅牢で効率的なフレームワークを確立することを目的として,Spken-SQuADベンチマークの最先端性能を実現する。
また,あいまいなユーザ要求と動的評価入力を備えたマルチターン音声対話のための最初のデータセットであるASK-QAを導入する。
コードとデータが近日中に公開される。
関連論文リスト
- Lyra: An Efficient and Speech-Centric Framework for Omni-Cognition [57.131546757903834]
Lyraはマルチモーダル能力を向上する効率的なMLLMであり、高度な長音声理解、音声理解、相互モダリティ効率、シームレスな音声対話などが含まれる。
Lyraは様々な視覚言語、視覚音声、音声言語のベンチマークで最先端のパフォーマンスを達成し、計算資源が少なく、訓練データも少ない。
論文 参考訳(メタデータ) (2024-12-12T17:50:39Z) - Advancing Multi-talker ASR Performance with Large Language Models [48.52252970956368]
対話シナリオにおける複数話者からの重複音声認識は、音声認識(ASR)において最も難しい問題の一つである。
本稿では,事前学習した音声エンコーダとLLMを利用したマルチストーカーASRのためのSOTアプローチを提案する。
提案手法は,シミュレーションデータセットLibriMixにおける従来のAEDに基づく手法を超越し,実世界のデータセットAMIの評価セット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-08-30T17:29:25Z) - Generating Data with Text-to-Speech and Large-Language Models for Conversational Speech Recognition [48.527630771422935]
複数話者対話型ASRのための合成データ生成パイプラインを提案する。
我々は、電話と遠隔会話音声設定のためのWhisper ASRモデルを微調整して評価を行う。
論文 参考訳(メタデータ) (2024-08-17T14:47:05Z) - Multi-Modal Retrieval For Large Language Model Based Speech Recognition [15.494654232953678]
我々は,kNN-LMとクロスアテンション手法の2つのアプローチによるマルチモーダル検索を提案する。
音声に基づくマルチモーダル検索はテキストベースの検索よりも優れていることを示す。
我々は,Spoken-Squad質問応答データセットを用いて,最先端の認識結果を得る。
論文 参考訳(メタデータ) (2024-06-13T22:55:22Z) - Turn-taking and Backchannel Prediction with Acoustic and Large Language
Model Fusion [38.78341787348164]
大規模言語モデル(LLM)を用いたニューラル音響モデルを用いた音声対話におけるターンテイクとバックチャネル位置の連続予測手法を提案する。
Switchboardの人間と人間の会話データセットの実験は、我々のアプローチが単一のモダリティでベースラインモデルより一貫して優れていることを示した。
論文 参考訳(メタデータ) (2024-01-26T08:59:07Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
マルチモーダルダイアログ検索のためのパラメータ効率の高いプロンプトチューニング手法であるDialCLIPを提案する。
提案手法では,事前学習された視覚言語モデルCLIP内のプロンプトに抽出された文脈特徴を学習するためのマルチモーダルコンテキスト生成手法を提案する。
様々なタイプの検索を容易にするために,CLIP出力からマルチモーダル表現空間へのマッピングを学習するために,複数の専門家を設計する。
論文 参考訳(メタデータ) (2024-01-02T07:40:12Z) - Weakly Supervised Data Augmentation Through Prompting for Dialogue
Understanding [103.94325597273316]
本稿では,弱教師付きフィルタを適用して拡張品質を反復する手法を提案する。
我々は、デイリーダイアログにおける感情と行動の分類タスクと、Facebook Multilingual Task-Oriented Dialogueにおける意図の分類タスクについて評価した。
特にDailyDialogでは、真理データの10%を使用して、100%のデータを使用する現在の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2022-10-25T17:01:30Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
本稿では,対話における対話コミュニケーションをモデル化するための枠組みを提案する。
我々は、対応するリスナー動作の複数の可能性を自動回帰的に出力する。
本手法は,非言語的ダイアド相互作用の多モーダルおよび非決定論的性質を有機的に捕捉する。
論文 参考訳(メタデータ) (2022-04-18T17:58:04Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
マルチターン対話は、2つ以上の異なる話者の役割から複数の発話からなる。
既存の検索に基づくマルチターン対話モデルでは、事前訓練された言語モデル(PrLM)をエンコーダとして、対話を粗く表現する。
本稿では,対話履歴に係わる効果的な発話認識表現と話者認識表現をモデル化することにより,そのようなギャップを埋める新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-09-14T15:07:19Z) - Speaker-Aware BERT for Multi-Turn Response Selection in Retrieval-Based
Chatbots [47.40380290055558]
話者変化情報を認識させる新しいモデルとして,話者認識BERT (SA-BERT) を提案する。
絡み合った対話に対処するために,話者認識型アンタングル化戦略を提案する。
論文 参考訳(メタデータ) (2020-04-07T02:08:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。