論文の概要: A Framework for Streaming Event-Log Prediction in Business Processes
- arxiv url: http://arxiv.org/abs/2412.16032v1
- Date: Fri, 20 Dec 2024 16:29:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:33.186684
- Title: A Framework for Streaming Event-Log Prediction in Business Processes
- Title(参考訳): ビジネスプロセスにおけるイベントログ予測のストリーミングフレームワーク
- Authors: Benedikt Bollig, Matthias Függer, Thomas Nowak,
- Abstract要約: ストリーミングモードにおけるイベントログ予測のためのPythonベースのフレームワークを提案する。
このフレームワークは、n-gramやLSTMといった言語モデルを含むストリーミングアルゴリズムを簡単に統合できる。
- 参考スコア(独自算出の注目度): 0.13654846342364302
- License:
- Abstract: We present a Python-based framework for event-log prediction in streaming mode, enabling predictions while data is being generated by a business process. The framework allows for easy integration of streaming algorithms, including language models like n-grams and LSTMs, and for combining these predictors using ensemble methods. Using our framework, we conducted experiments on various well-known process-mining data sets and compared classical batch with streaming mode. Though, in batch mode, LSTMs generally achieve the best performance, there is often an n-gram whose accuracy comes very close. Combining basic models in ensemble methods can even outperform LSTMs. The value of basic models with respect to LSTMs becomes even more apparent in streaming mode, where LSTMs generally lack accuracy in the early stages of a prediction run, while basic methods make sensible predictions immediately.
- Abstract(参考訳): 本稿では,ストリーミングモードにおけるイベントログ予測のためのPythonベースのフレームワークを提案する。
このフレームワークは、n-gramやLSTMのような言語モデルを含むストリーミングアルゴリズムの容易な統合を可能にし、これらの予測器をアンサンブルメソッドを使って組み合わせることができる。
フレームワークを用いて、様々なプロセスマイニングデータセットの実験を行い、従来のバッチとストリーミングモードを比較した。
バッチモードでは、LSTMは一般的に最高のパフォーマンスを達成するが、精度が非常に近いn-gramが存在することが多い。
アンサンブル法における基本モデルの組み合わせは、LSTMよりも優れている。
LSTMに関する基本的なモデルの価値は、ストリーミングモードではより明らかになり、LSTMは予測実行の初期段階で一般的に正確性を欠いている。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems [4.634606500665259]
マルチスケールプロセスのモデリングのための知識誘導機械学習(KGML)フレームワークを提案する。
本研究では,水文学における流れ予測の文脈におけるその性能について検討する。
論文 参考訳(メタデータ) (2024-07-29T16:25:43Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Predictive Coding Based Multiscale Network with Encoder-Decoder LSTM for
Video Prediction [1.2537993038844142]
将来のビデオフレーム予測のためのマルチスケール予測符号化モデルを提案する。
我々のモデルは、より高レベルなニューロンが粗い予測(より低解像度)を生成するマルチスケールアプローチ(粗から微細)を採用している。
本稿では,長期予測における予測誤差の蓄積を軽減するためのトレーニング戦略のいくつかの改善を提案する。
論文 参考訳(メタデータ) (2022-12-22T12:15:37Z) - Pretraining Without Attention [114.99187017618408]
本研究では、状態空間モデル(SSM)に基づくシーケンスルーティングの最近の進歩を利用して、注意を払わずに事前学習を探索する。
BiGS は GLUE 上で BERT の事前トレーニング精度と一致し、近似なしで 4096 トークンの長期事前トレーニングに拡張できる。
論文 参考訳(メタデータ) (2022-12-20T18:50:08Z) - Can recurrent neural networks learn process model structure? [0.2580765958706854]
本稿では,適合度,精度,一般化のために,変分に基づく再サンプリングとカスタムメトリクスを組み合わせた評価フレームワークを提案する。
LSTMは、単純化されたプロセスデータであっても、プロセスモデル構造を学ぶのに苦労する可能性があることを確認します。
また,トレーニング中にLSTMで見られる情報量が減少すると,一般化や精度の低下が生じた。
論文 参考訳(メタデータ) (2022-12-13T08:40:01Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
SIP(Sparse Implicit Processes)は,データ生成機構がモデルによって入力されるものと強く異なる場合,モデルバイアスを補正できることを示す。
合成データセットを用いて、SIPは、初期推定モデルの正確な予測よりもデータをよりよく反映する予測分布を提供することができることを示す。
論文 参考訳(メタデータ) (2022-07-21T18:00:01Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
組込み畳み込みLSTM(E NeuralTM)と呼ばれる新しいLSTM変種を提案する。
ETMでは、異なる1次元の畳み込みの群がLSTM構造に埋め込まれている。
RUL推定のために広く用いられているいくつかのベンチマークデータセットに対する最先端のアプローチよりも,提案したEMMアプローチの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-10T08:34:20Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。