論文の概要: A two-dimensional 10-qubit array in germanium with robust and localised qubit control
- arxiv url: http://arxiv.org/abs/2412.16044v1
- Date: Fri, 20 Dec 2024 16:47:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:22:48.035187
- Title: A two-dimensional 10-qubit array in germanium with robust and localised qubit control
- Title(参考訳): 頑健かつ局所的な量子ビット制御を持つゲルマニウム中の2次元10量子ビットアレイ
- Authors: Valentin John, Cécile X. Yu, Barnaby van Straaten, Esteban A. Rodríguez-Mena, Mauricio Rodríguez, Stefan Oosterhout, Lucas E. A. Stehouwer, Giordano Scappucci, Stefano Bosco, Maximilian Rimbach-Russ, Yann-Michel Niquet, Francesco Borsoi, Menno Veldhorst,
- Abstract要約: 量子コンピュータは、高い忠実度を持つ量子ビットの体系的な操作を必要とする。
ゲルマニウムのホールでは、スピン軌道相互作用により、電気的高速かつ高忠実なクビットゲートをテクスチンシチューで結ぶことができる。
ここでは, 材料成長, デバイス製造, キュービット制御の進歩を活用して, 二次元10スピンキュービットアレイを実現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum computers require the systematic operation of qubits with high fidelity. For holes in germanium, the spin-orbit interaction allows for \textit{in situ} electric fast and high-fidelity qubit gates. However, the interaction also causes a large qubit variability due to strong g-tensor anisotropy and dependence on the environment. Here, we leverage advances in material growth, device fabrication, and qubit control to realise a two-dimensional 10-spin qubit array, with qubits coupled up to four neighbours that can be controlled with high fidelity. By exploring the large parameter space of gate voltages and quantum dot occupancies, we demonstrate that plunger gate driving in the three-hole occupation enhances electric-dipole spin resonance (EDSR), creating a highly localised qubit drive. Our findings, confirmed with analytical and numerical models, highlight the crucial role of intradot Coulomb interaction and magnetic field direction. Furthermore, the ability to engineer qubits for robust control is a key asset for further scaling.
- Abstract(参考訳): 量子コンピュータは、高い忠実度を持つ量子ビットの体系的な操作を必要とする。
ゲルマニウムのホールの場合、スピン軌道相互作用は電気的高速かつ高忠実なクビットゲートを可能にする。
しかし、相互作用は、強いg-テンソル異方性と環境への依存により、大きな量子ビットの変動を引き起こす。
ここでは, 材料成長, デバイス製造, およびキュービット制御の進歩を活用して, 高忠実度で制御できる4つの近傍に結合した2次元10スピンキュービットアレイを実現する。
ゲート電圧と量子ドット占有率の大きなパラメータ空間を探索することにより、3ホール占有時のプランジャーゲート駆動により電気双極子スピン共鳴(EDSR)が促進され、高度に局所化された量子ビットドライブが生成されることを示す。
解析的および数値的モデルで確認した本研究は,ドット内クーロン相互作用と磁場方向の重要な役割を浮き彫りにした。
さらに、堅牢な制御のためにキュービットを設計する能力は、さらなるスケーリングのための重要な資産である。
関連論文リスト
- A 2x2 quantum dot array in silicon with fully tuneable pairwise interdot coupling [29.539407433267254]
本報告では, 隣接するすべての点間の相互結合が可変な2次元シリコン金属酸化物半導体(MOS)量子ドットについて述べる。
この装置は4.2Kで特徴付けられ、二重ドットと三重ドットの構成の形成と分離を実証する。
論文 参考訳(メタデータ) (2024-11-21T06:46:15Z) - High-fidelity spin qubit shuttling via large spin-orbit interaction [0.0]
ゼーマン場の大きな不均一性は、運動するスピン状態のコヒーレンスを安定化させる。
我々の発見は一般に幅広い設定に適用でき、大規模量子プロセッサへの道を開くことができる。
論文 参考訳(メタデータ) (2023-11-27T16:13:16Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
電子スピンレジスタのサイズを拡大するためのスケーラブルなアプローチを提案する。
我々は, 中心NVのコヒーレンス限界外における未知電子スピンの検出とコヒーレント制御を実証するために, このアプローチを実験的に実現した。
我々の研究は、ナノスケールセンシングを推進し、誤り訂正のための相関ノイズスペクトロスコピーを有効にし、量子通信のためのスピンチェーン量子ワイヤの実現を促進するため、より大きな量子レジスタを工学的に開発する方法を開拓する。
論文 参考訳(メタデータ) (2023-06-29T17:55:16Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
ゲート型反射率計を用いたスピンリードアウトによりシリコン中の二重量子ドットを実験的に検討した。
磁気分光法により生じる反射位相信号の特徴は,2点のサイト依存の$g-$factorに関する情報を伝達する。
論文 参考訳(メタデータ) (2022-06-27T09:07:20Z) - Fully tunable hyperfine interactions of hole spin qubits in Si and Ge
quantum dots [0.0]
Hole spin qubitsはスケーラブルな量子コンピュータのための最前線のプラットフォームである。
最先端のデバイスは、核欠陥との超微細な相互作用に起因するノイズに悩まされている。
これらの相互作用は、デバイス設計と外部電界によって制御される、高度に調整可能な異方性を持つことを示す。
論文 参考訳(メタデータ) (2021-06-25T16:31:42Z) - Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low
power [0.0]
平面Geヘテロ構造におけるホールスピン量子ビットは、スケーラブルな量子コンピュータのための最前線のプラットフォームの一つである。
我々はこれらの相互作用を桁違いに拡張する最小限の設計修正を提案する。
我々のアプローチは、量子ドットを一方向に強く絞る非対称ポテンシャルに基づいている。
論文 参考訳(メタデータ) (2021-03-30T23:46:07Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
フリップフロップ量子ビットは、シリコン中の反平行ドナー結合電子とドナー核スピンを持つ状態において符号化される。
相互作用する電子スピンと核スピンによって形成されるマルチレベルシステムについて検討する。
低周波雑音下で高速かつロバストな単一ビットゲートを生成する最適制御方式を提案する。
論文 参考訳(メタデータ) (2021-01-27T18:37:30Z) - Ultrafast Hole Spin Qubit with Gate-Tunable Spin-Orbit Switch [0.0]
我々はゲルマニウム/シリコンコア/シェルナノワイヤにおけるホールスピン量子ビットの超高速で普遍的な量子制御を実証する。
本稿では,Rabi周波数,ゼーマンエネルギー,コヒーレンス時間に対する電気的制御について述べる。
極端に強いがゲート制御可能なスピン軌道相互作用を基礎となるメカニズムとして同定する。
論文 参考訳(メタデータ) (2020-06-19T15:09:00Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z) - Universal coherence protection in a solid-state spin qubit [95.73841600562527]
我々は、デコヒーレンス保護部分空間に埋め込まれたロバストな量子ビットを構築する。
量子ビットは、磁気、電気、温度の変動から保護されている。
これにより、クォービットの不均一な退化時間が4桁以上増加する。
論文 参考訳(メタデータ) (2020-05-12T22:44:23Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
表面音響波(SAW)は、圧電材料内で動く量子ドットを生成することができる。
動的量子ドット上の電子スピン量子ビットがどのように絡み合うかを示す。
論文 参考訳(メタデータ) (2020-01-15T19:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。