Formal Mathematical Reasoning: A New Frontier in AI
- URL: http://arxiv.org/abs/2412.16075v1
- Date: Fri, 20 Dec 2024 17:19:24 GMT
- Title: Formal Mathematical Reasoning: A New Frontier in AI
- Authors: Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, Dawn Song,
- Abstract summary: We advocate for formal mathematical reasoning and argue that it is indispensable for advancing AI4Math to the next level.
We summarize existing progress, discuss open challenges, and envision critical milestones to measure future success.
- Score: 60.26950681543385
- License:
- Abstract: AI for Mathematics (AI4Math) is not only intriguing intellectually but also crucial for AI-driven discovery in science, engineering, and beyond. Extensive efforts on AI4Math have mirrored techniques in NLP, in particular, training large language models on carefully curated math datasets in text form. As a complementary yet less explored avenue, formal mathematical reasoning is grounded in formal systems such as proof assistants, which can verify the correctness of reasoning and provide automatic feedback. In this position paper, we advocate for formal mathematical reasoning and argue that it is indispensable for advancing AI4Math to the next level. In recent years, we have seen steady progress in using AI to perform formal reasoning, including core tasks such as theorem proving and autoformalization, as well as emerging applications such as verifiable generation of code and hardware designs. However, significant challenges remain to be solved for AI to truly master mathematics and achieve broader impact. We summarize existing progress, discuss open challenges, and envision critical milestones to measure future success. At this inflection point for formal mathematical reasoning, we call on the research community to come together to drive transformative advancements in this field.
Related papers
- The Mathematics of Artificial Intelligence [23.03787751696068]
This overview article highlights the critical role of mathematics in artificial intelligence (AI)
It emphasizes that mathematics provides tools to better understand and enhance AI systems.
Conversely, AI raises new problems and drives the development of new mathematics at the intersection of various fields.
arXiv Detail & Related papers (2025-01-15T15:00:23Z) - Mathematics and Machine Creativity: A Survey on Bridging Mathematics with AI [3.7721193149333634]
This paper presents a comprehensive survey on the applications of artificial intelligence (AI) in mathematical research.
Recent developments in AI, particularly in reinforcement learning (RL) and large language models (LLMs), have demonstrated the potential for AI to contribute back to mathematics.
This survey aims to establish a bridge between AI and mathematics, providing insights into the mutual benefits and fostering deeper interdisciplinary understanding.
arXiv Detail & Related papers (2024-12-21T08:58:36Z) - FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI [2.0608396919601493]
FrontierMath is a benchmark of hundreds of original, exceptionally challenging mathematics problems crafted and vetted by expert mathematicians.
Current state-of-the-art AI models solve under 2% of problems, revealing a vast gap between AI capabilities and the prowess of the mathematical community.
As AI systems advance toward expert-level mathematical abilities, FrontierMath offers a rigorous testbed that quantifies their progress.
arXiv Detail & Related papers (2024-11-07T17:07:35Z) - LeanAgent: Lifelong Learning for Formal Theorem Proving [85.39415834798385]
We present LeanAgent, a novel lifelong learning framework for formal theorem proving.
LeanAgent continuously generalizes to and improves on ever-expanding mathematical knowledge.
It successfully proves 155 theorems previously unproved formally by humans across 23 diverse Lean repositories.
arXiv Detail & Related papers (2024-10-08T17:11:24Z) - Mathematical Formalized Problem Solving and Theorem Proving in Different Fields in Lean 4 [0.0]
This paper explores the use of Large Language Models (LLMs) to generate formal proof steps and complete formalized proofs.
The goal is to determine how AI can be leveraged to assist the mathematical formalization process and improve its performance.
arXiv Detail & Related papers (2024-09-09T18:21:28Z) - Machine learning and information theory concepts towards an AI
Mathematician [77.63761356203105]
The current state-of-the-art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms of mathematical reasoning.
This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities.
It takes an information-theoretical posture to ask questions about what constitutes an interesting mathematical statement.
arXiv Detail & Related papers (2024-03-07T15:12:06Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Mathematics, word problems, common sense, and artificial intelligence [0.0]
We discuss the capacities and limitations of current artificial intelligence (AI) technology to solve word problems that combine elementary knowledge with commonsense reasoning.
We review three approaches that have been developed, using AI natural language technology.
We argue that it is not clear whether these kinds of limitations will be important in developing AI technology for pure mathematical research.
arXiv Detail & Related papers (2023-01-23T21:21:39Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
We review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade.
Recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning.
arXiv Detail & Related papers (2022-12-20T18:46:16Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
This paper aims to advance the mathematical intelligence of machines by presenting the first Chinese mathematical pre-trained language model(PLM)
Unlike other standard NLP tasks, mathematical texts are difficult to understand, since they involve mathematical terminology, symbols and formulas in the problem statement.
We design a novel curriculum pre-training approach for improving the learning of mathematical PLMs, consisting of both basic and advanced courses.
arXiv Detail & Related papers (2022-06-13T17:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.