Mathematical Formalized Problem Solving and Theorem Proving in Different Fields in Lean 4
- URL: http://arxiv.org/abs/2409.05977v3
- Date: Fri, 08 Nov 2024 16:42:41 GMT
- Title: Mathematical Formalized Problem Solving and Theorem Proving in Different Fields in Lean 4
- Authors: Xichen Tang,
- Abstract summary: This paper explores the use of Large Language Models (LLMs) to generate formal proof steps and complete formalized proofs.
The goal is to determine how AI can be leveraged to assist the mathematical formalization process and improve its performance.
- Score: 0.0
- License:
- Abstract: Formalizing mathematical proofs using computerized verification languages like Lean 4 has the potential to significantly impact the field of mathematics, it offers prominent capabilities for advancing mathematical reasoning. However, existing efforts are largely limited to creating formalized versions of proofs from extensive online mathematical corpora, struggling to keep pace with the rapidly evolving nature of mathematics. To bridge the gap between traditional and computerized proof techniques, this paper explores the use of Large Language Models (LLMs) to generate formal proof steps and complete formalized proofs. By converting natural language (NL) mathematical proofs into formalized versions, this work introduces the basic structure and tactics of the Lean 4 language. The goal is to determine how AI can be leveraged to assist the mathematical formalization process and improve its performance. Several examples are provided that demonstrate solving problems using both traditional and Lean 4-based approaches. Ultimately, this paper presents an explanation of the foundations of Lean 4 and comparative analyses of the mathematical formalization process using traditional and AI-augmented techniques. The findings indicate that AI- powered tools have significant potential to accelerate and enhance the formalization of mathematical proofs, paving the way for more efficient and reliable theorem-proving for AI for Math in the future.
Related papers
- Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation [71.32761934724867]
This work proposes Alchemy, a framework for data synthesis that constructs formal theorems through symbolic mutation.
For each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it.
As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M.
arXiv Detail & Related papers (2024-10-21T08:04:21Z) - LeanAgent: Lifelong Learning for Formal Theorem Proving [85.39415834798385]
We present LeanAgent, a novel lifelong learning framework for formal theorem proving.
LeanAgent continuously generalizes to and improves on ever-expanding mathematical knowledge.
It successfully proves 155 theorems previously unproved formally by humans across 23 diverse Lean repositories.
arXiv Detail & Related papers (2024-10-08T17:11:24Z) - Lean-STaR: Learning to Interleave Thinking and Proving [53.923617816215774]
We present Lean-STaR, a framework for training language models to produce informal thoughts prior to each step of a proof.
Lean-STaR achieves state-of-the-art results on the miniF2F-test benchmark within the Lean theorem proving environment.
arXiv Detail & Related papers (2024-07-14T01:43:07Z) - Autoformalizing Euclidean Geometry [74.72212706513318]
We introduce a neuro-symbolic framework for autoformalizing Euclidean geometry.
One challenge is that informal proofs rely on diagrams, leaving gaps in texts that are hard to formalize.
We provide automatic semantic evaluation for autoformalized theorem statements.
arXiv Detail & Related papers (2024-05-27T14:35:10Z) - EvoGPT-f: An Evolutionary GPT Framework for Benchmarking Formal Math
Languages [0.0]
Formal mathematics is the discipline of translating mathematics into a programming language.
This paper introduces an evolutionary framework for the first systematic quantitative analysis of the differential machine learnability of five formal math corpora.
arXiv Detail & Related papers (2024-02-12T19:10:11Z) - math-PVS: A Large Language Model Framework to Map Scientific
Publications to PVS Theories [10.416375584563728]
This work investigates the applicability of large language models (LLMs) in formalizing advanced mathematical concepts.
We envision an automated process, called emphmath-PVS, to extract and formalize mathematical theorems from research papers.
arXiv Detail & Related papers (2023-10-25T23:54:04Z) - A New Approach Towards Autoformalization [7.275550401145199]
Autoformalization is the task of translating natural language mathematics into a formal language that can be verified by a program.
Research paper mathematics requires large amounts of background and context.
We propose an avenue towards tackling autoformalization for research-level mathematics, by breaking the task into easier and more approachable subtasks.
arXiv Detail & Related papers (2023-10-12T00:50:24Z) - Towards Autoformalization of Mathematics and Code Correctness:
Experiments with Elementary Proofs [5.045988012508899]
Autoformalization seeks to address this by translating proofs written in natural language into a formal representation that is computer-verifiable via interactive theorem provers.
We introduce a semantic parsing approach, based on the Universal Transformer architecture, that translates elementary mathematical proofs into an equivalent formalization in the language of the Coq interactive theorem prover.
arXiv Detail & Related papers (2023-01-05T17:56:00Z) - NaturalProofs: Mathematical Theorem Proving in Natural Language [132.99913141409968]
We develop NaturalProofs, a multi-domain corpus of mathematical statements and their proofs.
NaturalProofs unifies broad coverage, deep coverage, and low-resource mathematical sources.
We benchmark strong neural methods on mathematical reference retrieval and generation tasks.
arXiv Detail & Related papers (2021-03-24T03:14:48Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
This work is motivated by the possibility that a major limitation of automated theorem provers compared to humans might be addressable via generation from language models.
We present an automated prover and proof assistant, GPT-f, for the Metamath formalization language, and analyze its performance.
arXiv Detail & Related papers (2020-09-07T19:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.