Decoding Poultry Vocalizations -- Natural Language Processing and Transformer Models for Semantic and Emotional Analysis
- URL: http://arxiv.org/abs/2412.16182v1
- Date: Wed, 11 Dec 2024 06:44:32 GMT
- Title: Decoding Poultry Vocalizations -- Natural Language Processing and Transformer Models for Semantic and Emotional Analysis
- Authors: Venkatraman Manikandan, Suresh Neethirajan,
- Abstract summary: Deciphering the acoustic language of chickens offers new opportunities in animal welfare and ecological informatics.
We apply advanced Natural Language Processing and transformer based models to translate bioacoustic data into meaningful insights.
This pipeline decodes poultry vocalizations into interpretable categories including distress calls, feeding signals, and mating vocalizations.
- Score: 0.0
- License:
- Abstract: Deciphering the acoustic language of chickens offers new opportunities in animal welfare and ecological informatics. Their subtle vocal signals encode health conditions, emotional states, and dynamic interactions within ecosystems. Understanding the semantics of these calls provides a valuable tool for interpreting their functional vocabulary and clarifying how each sound serves a specific purpose in social and environmental contexts. We apply advanced Natural Language Processing and transformer based models to translate bioacoustic data into meaningful insights. Our method integrates Wave2Vec 2.0 for raw audio feature extraction with a fine tuned Bidirectional Encoder Representations from Transformers model, pretrained on a broad corpus of animal sounds and adapted to poultry tasks. This pipeline decodes poultry vocalizations into interpretable categories including distress calls, feeding signals, and mating vocalizations, revealing emotional nuances often overlooked by conventional analyses. Achieving 92 percent accuracy in classifying key vocalization types, our approach demonstrates the feasibility of real time automated monitoring of flock health and stress. By tracking this functional vocabulary, farmers can respond proactively to environmental or behavioral changes, improving poultry welfare, reducing stress related productivity losses, and supporting more sustainable farm management. Beyond agriculture, this research enhances our understanding of computational ecology. Accessing the semantic foundation of animal calls may indicate biodiversity, environmental stressors, and species interactions, informing integrative ecosystem level decision making.
Related papers
- Multi Modal Information Fusion of Acoustic and Linguistic Data for Decoding Dairy Cow Vocalizations in Animal Welfare Assessment [0.0]
This study aims to decode dairy cow contact calls by employing multi-modal data fusion techniques.
We utilize the Natural Language Processing model to transcribe audio recordings of cow vocalizations into written form.
We categorized vocalizations into high frequency calls associated with distress or arousal, and low frequency calls linked to contentment or calmness.
arXiv Detail & Related papers (2024-11-01T09:48:30Z) - Feature Representations for Automatic Meerkat Vocalization Classification [15.642602544201308]
This paper investigates feature representations for automatic meerkat vocalization analysis.
Call type classification studies conducted on two data sets reveal that feature extraction methods developed for human speech processing can be effectively employed for automatic meerkat call analysis.
arXiv Detail & Related papers (2024-08-27T10:51:51Z) - Active Bird2Vec: Towards End-to-End Bird Sound Monitoring with
Transformers [2.404305970432934]
We propose a shift towards end-to-end learning in bird sound monitoring by combining self-supervised (SSL) and deep active learning (DAL)
We aim to bypass traditional spectrogram conversions, enabling direct raw audio processing.
arXiv Detail & Related papers (2023-08-14T13:06:10Z) - Transferable Models for Bioacoustics with Human Language Supervision [0.0]
BioLingual is a new model for bioacoustics based on contrastive language-audio pretraining.
It can identify over a thousand species' calls across taxa, complete bioacoustic tasks zero-shot, and retrieve animal vocalization recordings from natural text queries.
arXiv Detail & Related papers (2023-08-09T14:22:18Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
We propose a hierarchical framework, based on chain regression models, for affective recognition from vocal bursts.
To address the challenge of data sparsity, we also use self-supervised learning (SSL) representations with layer-wise and temporal aggregation modules.
The proposed systems participated in the ACII Affective Vocal Burst (A-VB) Challenge 2022 and ranked first in the "TWO'' and "CULTURE" tasks.
arXiv Detail & Related papers (2023-03-14T16:08:45Z) - End-to-End Binaural Speech Synthesis [71.1869877389535]
We present an end-to-end speech synthesis system that combines a low-bitrate audio system with a powerful decoder.
We demonstrate the capability of the adversarial loss in capturing environment effects needed to create an authentic auditory scene.
arXiv Detail & Related papers (2022-07-08T05:18:36Z) - Color Overmodification Emerges from Data-Driven Learning and Pragmatic
Reasoning [53.088796874029974]
We show that speakers' referential expressions depart from communicative ideals in ways that help illuminate the nature of pragmatic language use.
By adopting neural networks as learning agents, we show that overmodification is more likely with environmental features that are infrequent or salient.
arXiv Detail & Related papers (2022-05-18T18:42:43Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
Recent research showed the promise of machine learning tools for analyzing acoustic communication in nonhuman species.
We outline the key elements required for the collection and processing of massive bioacoustic data of sperm whales.
The technological capabilities developed are likely to yield cross-applications and advancements in broader communities investigating non-human communication and animal behavioral research.
arXiv Detail & Related papers (2021-04-17T18:39:22Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Modelling Animal Biodiversity Using Acoustic Monitoring and Deep
Learning [0.0]
This paper outlines an approach for achieving this using state of the art in machine learning to automatically extract features from time-series audio signals.
The acquired bird songs are processed using mel-frequency cepstrum (MFC) to extract features which are later classified using a multilayer perceptron (MLP)
Our proposed method achieved promising results with 0.74 sensitivity, 0.92 specificity and an accuracy of 0.74.
arXiv Detail & Related papers (2021-03-12T13:50:31Z) - VAW-GAN for Disentanglement and Recomposition of Emotional Elements in
Speech [91.92456020841438]
We study the disentanglement and recomposition of emotional elements in speech through variational autoencoding Wasserstein generative adversarial network (VAW-GAN)
We propose a speaker-dependent EVC framework that includes two VAW-GAN pipelines, one for spectrum conversion, and another for prosody conversion.
Experiments validate the effectiveness of our proposed method in both objective and subjective evaluations.
arXiv Detail & Related papers (2020-11-03T08:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.