GALOT: Generative Active Learning via Optimizable Zero-shot Text-to-image Generation
- URL: http://arxiv.org/abs/2412.16227v1
- Date: Wed, 18 Dec 2024 18:40:21 GMT
- Title: GALOT: Generative Active Learning via Optimizable Zero-shot Text-to-image Generation
- Authors: Hanbin Hong, Shenao Yan, Shuya Feng, Yan Yan, Yuan Hong,
- Abstract summary: This paper integrates the zero-shot text-to-image (T2I) synthesis and active learning.
We leverage the AL criteria to optimize the text inputs for generating more informative and diverse data samples.
This approach reduces the cost of data collection and annotation while increasing the efficiency of model training.
- Score: 21.30138131496276
- License:
- Abstract: Active Learning (AL) represents a crucial methodology within machine learning, emphasizing the identification and utilization of the most informative samples for efficient model training. However, a significant challenge of AL is its dependence on the limited labeled data samples and data distribution, resulting in limited performance. To address this limitation, this paper integrates the zero-shot text-to-image (T2I) synthesis and active learning by designing a novel framework that can efficiently train a machine learning (ML) model sorely using the text description. Specifically, we leverage the AL criteria to optimize the text inputs for generating more informative and diverse data samples, annotated by the pseudo-label crafted from text, then served as a synthetic dataset for active learning. This approach reduces the cost of data collection and annotation while increasing the efficiency of model training by providing informative training samples, enabling a novel end-to-end ML task from text description to vision models. Through comprehensive evaluations, our framework demonstrates consistent and significant improvements over traditional AL methods.
Related papers
- READ: Reinforcement-based Adversarial Learning for Text Classification with Limited Labeled Data [7.152603583363887]
Pre-trained transformer models such as BERT have shown massive gains across many text classification tasks.
This paper proposes a method that encapsulates reinforcement learning-based text generation and semi-supervised adversarial learning approaches.
Our method READ, Reinforcement-based Adversarial learning, utilizes an unlabeled dataset to generate diverse synthetic text through reinforcement learning.
arXiv Detail & Related papers (2025-01-14T11:39:55Z) - Efficient fine-tuning methodology of text embedding models for information retrieval: contrastive learning penalty (clp) [0.0]
This study presents an efficient fine-tuning methodology to enhance the information retrieval performance of pre-trained text embedding models.
The proposed methodology achieves significant performance improvements over existing methods in document retrieval tasks.
arXiv Detail & Related papers (2024-12-23T07:55:22Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Text2Data: Low-Resource Data Generation with Textual Control [100.5970757736845]
Text2Data is a novel approach that utilizes unlabeled data to understand the underlying data distribution.
It undergoes finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - Compute-Efficient Active Learning [0.0]
Active learning aims at reducing labeling costs by selecting the most informative samples from an unlabeled dataset.
Traditional active learning process often demands extensive computational resources, hindering scalability and efficiency.
We present a novel method designed to alleviate the computational burden associated with active learning on massive datasets.
arXiv Detail & Related papers (2024-01-15T12:32:07Z) - Efficient End-to-end Language Model Fine-tuning on Graphs [21.23522552579571]
Learning from Text-Attributed Graphs (TAGs) has attracted significant attention due to its wide range of real-world applications.
We introduce LEADING, a novel and efficient approach for end-to-end fine-tuning of language models on TAGs.
Our proposed approach demonstrates superior performance, achieving state-of-the-art (SOTA) results on the ogbn-arxiv leaderboard.
arXiv Detail & Related papers (2023-12-07T22:35:16Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
We propose the first effective query strategy for Active Learning in abstractive text summarization.
We show that using our strategy in AL annotation helps to improve the model performance in terms of ROUGE and consistency scores.
arXiv Detail & Related papers (2023-01-09T10:33:14Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.