Synthetic Text Generation for Training Large Language Models via Gradient Matching
- URL: http://arxiv.org/abs/2502.17607v1
- Date: Mon, 24 Feb 2025 19:49:15 GMT
- Title: Synthetic Text Generation for Training Large Language Models via Gradient Matching
- Authors: Dang Nguyen, Zeman Li, Mohammadhossein Bateni, Vahab Mirrokni, Meisam Razaviyayn, Baharan Mirzasoleiman,
- Abstract summary: We propose the first theoretically rigorous approach for generating synthetic human-readable text.<n>In doing so, the generated synthetic text can guarantee convergence of the model to a close neighborhood of the solution obtained by fine-tuning on real data.
- Score: 27.74603049449281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic data has the potential to improve the performance, training efficiency, and privacy of real training examples. Nevertheless, existing approaches for synthetic text generation are mostly heuristics and cannot generate human-readable text without compromising the privacy of real data or provide performance guarantees for training Large Language Models (LLMs). In this work, we propose the first theoretically rigorous approach for generating synthetic human-readable text that guarantees the convergence and performance of LLMs during fine-tuning on a target task. To do so, we leverage Alternating Direction Method of Multipliers (ADMM) that iteratively optimizes the embeddings of synthetic examples to match the gradient of the target training or validation data, and maps them to a sequence of text tokens with low perplexity. In doing so, the generated synthetic text can guarantee convergence of the model to a close neighborhood of the solution obtained by fine-tuning on real data. Experiments on various classification tasks confirm the effectiveness of our proposed approach.
Related papers
- The Synthetic Imputation Approach: Generating Optimal Synthetic Texts For Underrepresented Categories In Supervised Classification Tasks [0.0]
It is often difficult to find sufficient examples for all categories in a task when building a high-quality training set.
I propose a solution, the synthetic imputation approach.
This approach generates synthetic texts based on careful prompting and five original examples drawn randomly with replacement from the sample.
With 75 original examples or more, synthetic imputation's performance is on par with a full sample of original texts, and overfitting remains low, predictable and correctable with 50 original samples.
arXiv Detail & Related papers (2025-04-21T15:07:26Z) - Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.
Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - READ: Reinforcement-based Adversarial Learning for Text Classification with Limited Labeled Data [7.152603583363887]
Pre-trained transformer models such as BERT have shown massive gains across many text classification tasks.<n>This paper proposes a method that encapsulates reinforcement learning-based text generation and semi-supervised adversarial learning approaches.<n>Our method READ, Reinforcement-based Adversarial learning, utilizes an unlabeled dataset to generate diverse synthetic text through reinforcement learning.
arXiv Detail & Related papers (2025-01-14T11:39:55Z) - GALOT: Generative Active Learning via Optimizable Zero-shot Text-to-image Generation [21.30138131496276]
This paper integrates the zero-shot text-to-image (T2I) synthesis and active learning.
We leverage the AL criteria to optimize the text inputs for generating more informative and diverse data samples.
This approach reduces the cost of data collection and annotation while increasing the efficiency of model training.
arXiv Detail & Related papers (2024-12-18T18:40:21Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
Large language models (LLMs) have demonstrated remarkable in-context learning capabilities across diverse applications.<n>We introduce EPIC, a novel approach that leverages balanced, grouped data samples and consistent formatting with unique variable mapping to guide LLMs in generating accurate synthetic data across all classes, even for imbalanced datasets.
arXiv Detail & Related papers (2024-04-15T17:49:16Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - Advancing Semi-Supervised Learning for Automatic Post-Editing: Data-Synthesis by Mask-Infilling with Erroneous Terms [5.366354612549173]
We focus on data-synthesis methods to create high-quality synthetic data.
We present a data-synthesis method by which the resulting synthetic data mimic the translation errors found in actual data.
Experimental results show that using the synthetic data created by our approach results in significantly better APE performance than other synthetic data created by existing methods.
arXiv Detail & Related papers (2022-04-08T07:48:57Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.