論文の概要: The impact of behavioral diversity in multi-agent reinforcement learning
- arxiv url: http://arxiv.org/abs/2412.16244v2
- Date: Wed, 29 Jan 2025 09:53:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:52:01.483891
- Title: The impact of behavioral diversity in multi-agent reinforcement learning
- Title(参考訳): 多エージェント強化学習における行動多様性の影響
- Authors: Matteo Bettini, Ryan Kortvelesy, Amanda Prorok,
- Abstract要約: 行動多様性と形態的多様性の相乗効果を示す。
行動に異質なチームがいかに学習し、繰り返し発生する混乱を克服するための潜伏したスキルを維持しているかを示します。
- 参考スコア(独自算出の注目度): 8.905920197601173
- License:
- Abstract: Many of the world's most pressing issues, such as climate change and global peace, require complex collective problem-solving skills. Recent studies indicate that diversity in individuals' behaviors is key to developing such skills and increasing collective performance. Yet behavioral diversity in collective artificial learning is understudied, with today's machine learning paradigms commonly favoring homogeneous agent strategies over heterogeneous ones, mainly due to computational considerations. In this work, we employ diversity measurement and control paradigms to study the impact of behavioral heterogeneity in several facets of multi-agent reinforcement learning. Through experiments in team play and other cooperative tasks, we show the emergence of unbiased behavioral roles that improve team outcomes; how behavioral diversity synergizes with morphological diversity; how diverse agents are more effective at finding cooperative solutions in sparse reward settings; and how behaviorally heterogeneous teams learn and retain latent skills to overcome repeated disruptions. Overall, our results indicate that, by controlling diversity, we can obtain non-trivial benefits over homogeneous training paradigms, demonstrating that diversity is a fundamental component of collective artificial learning, an insight thus far overlooked.
- Abstract(参考訳): 気候変動や世界平和など、世界で最も急進的な問題の多くは、複雑な総合的な問題解決スキルを必要としている。
近年の研究では、個人の行動の多様性が、このようなスキルを発達させ、集団的パフォーマンスを高める鍵であることを示唆している。
しかし、集合的機械学習における行動の多様性は研究されており、今日の機械学習のパラダイムは、主に計算上の考慮から、異質なエージェント戦略よりも均質なエージェント戦略を好んでいる。
本研究では多様性測定と制御パラダイムを用いて,多エージェント強化学習における行動の不均一性の影響について検討する。
チームプレイやその他の協力的なタスクの実験を通じて、チームの成果を改善するためのバイアスのない行動の役割の出現、行動多様性が形態的多様性と相乗効果する方法、多様なエージェントがスパース報酬設定での協調ソリューションを見つけるのにいかに効果的か、そして、行動に異質なチームが、繰り返しディスラプションを克服するために潜在スキルを学び、保持するか、などが示されます。
全体として,多様性を制御することによって,多様性が集合的人工知能の基本的な構成要素であることを示す,均質なトレーニングパラダイムよりも非自明なメリットを得ることができることが示唆された。
関連論文リスト
- The Curse of Diversity in Ensemble-Based Exploration [7.209197316045156]
データ共有エージェントの多様なアンサンブルの訓練は、個々のアンサンブルメンバーのパフォーマンスを著しく損なう可能性がある。
私たちはこの現象を多様性の呪いと呼んでいる。
多様性の呪いに対処する表現学習の可能性を示す。
論文 参考訳(メタデータ) (2024-05-07T14:14:50Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
ビッグデータと人工知能の時代において、新しいパラダイムは、大規模な異種データをモデル化するために、対照的な自己教師付き学習を活用することである。
本調査は基礎モデルの異種コントラスト学習の現況を批判的に評価する。
論文 参考訳(メタデータ) (2024-03-30T02:55:49Z) - System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning [8.280943341629161]
マルチエージェントシステムにおける振る舞いの不均一性の尺度であるシステムニューラルダイバーシティ(SND)を紹介する。
SNDはエージェントが取得した潜時レジリエンスのスキルを計測できるが、タスクパフォーマンス(リワード)などの他のプロキシは失敗する。
我々は、このパラダイムが探索フェーズのブートストラップにどのように使用できるかを示し、最適なポリシーを高速に見つける。
論文 参考訳(メタデータ) (2023-05-03T13:58:13Z) - Identifiability Results for Multimodal Contrastive Learning [72.15237484019174]
本研究では,以前研究したマルチビュー設定よりも,より一般的な設定で共有要因を復元可能であることを示す。
本研究は,マルチモーダル表現学習の理論的基盤を提供し,マルチモーダルコントラスト学習を実践的に効果的に設定する方法を説明する。
論文 参考訳(メタデータ) (2023-03-16T09:14:26Z) - A Unifying Perspective on Multi-Calibration: Game Dynamics for
Multi-Objective Learning [63.20009081099896]
マルチキャリブレーション予測器の設計と解析のための統一フレームワークを提供する。
ゲームダイナミクスとの接続を利用して,多様なマルチ校正学習問題に対する最先端の保証を実現する。
論文 参考訳(メタデータ) (2023-02-21T18:24:17Z) - Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome
Homogenization? [90.35044668396591]
機械学習における繰り返しのテーマはアルゴリズムによるモノカルチャーである。同じシステム、またはコンポーネントを共有するシステムは、複数の意思決定者によってデプロイされる。
意思決定者がトレーニングデータや特定のモデルなどのコンポーネントを共有すれば、より均一な結果が得られます。
我々はこの仮説をアルゴリズムフェアネスベンチマークで検証し、トレーニングデータの共有がホモジェナイゼーションを確実に悪化させることを示した。
結果の均質化に関する哲学的分析と社会的な課題を、デプロイされた機械学習システムに含めることに着目して結論付ける。
論文 参考訳(メタデータ) (2022-11-25T09:33:11Z) - Inferring Versatile Behavior from Demonstrations by Matching Geometric
Descriptors [72.62423312645953]
人間は直感的にタスクを多目的に解決し、軌道に基づく計画や個々のステップの行動を変化させる。
現在のImitation Learningアルゴリズムは、通常、単調な専門家によるデモンストレーションのみを考慮し、状態アクションベースの設定で行動する。
代わりに、移動プリミティブの混合と分布マッチングの目的を組み合わせることで、専門家の行動と汎用性にマッチする多目的行動を学ぶ。
論文 参考訳(メタデータ) (2022-10-17T16:42:59Z) - Collaborative Training of Heterogeneous Reinforcement Learning Agents in
Environments with Sparse Rewards: What and When to Share? [7.489793155793319]
本研究は,本質的なモチベーションを通じて得られた情報と,より効率的な探索と学習の高速化を目的とした情報を組み合わせることに焦点を当てる。
計算コストの少ない協調的なフレームワークが知識を共有することなく独立した学習プロセスより優れていることを示す。
論文 参考訳(メタデータ) (2022-02-24T16:15:51Z) - Improved cooperation by balancing exploration and exploitation in
intertemporal social dilemma tasks [2.541277269153809]
本研究では,探索と搾取のバランスをとることができる学習率を組み込むことで協調を達成するための新たな学習戦略を提案する。
簡単な戦略を駆使したエージェントは、時間的社会的ジレンマと呼ばれる意思決定タスクにおいて、相対的に集団的リターンを改善する。
また、学習率の多様性が強化学習エージェントの人口に与える影響についても検討し、異種集団で訓練されたエージェントが特に協調した政策を発達させることを示す。
論文 参考訳(メタデータ) (2021-10-19T08:40:56Z) - Neural Network Ensembles: Theory, Training, and the Importance of
Explicit Diversity [6.495473856599276]
アンサンブルラーニング(英: Ensemble Learning)とは、複数の基本学習者が戦略的に生成され、1つの複合学習者に結合されるプロセスである。
学習者の精度とアンサンブルの多様性の適切なバランスは、ベンチマークや実世界のデータセット上での機械学習タスクのパフォーマンスを向上させることができる。
最近の理論的および実践的な研究は、アンサンブルの精度と多様性の間の微妙なトレードオフを実証している。
論文 参考訳(メタデータ) (2021-09-29T00:43:57Z) - Emergent Hand Morphology and Control from Optimizing Robust Grasps of
Diverse Objects [63.89096733478149]
多様な物体をつかむために、効果的なハンドデザインが自然に現れるデータ駆動型アプローチを紹介します。
形態と把持スキルを共同で効率的に設計するベイズ最適化アルゴリズムを開発した。
我々は,新しい物体をつかむための堅牢で費用効率のよい手形態を発見するためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-22T17:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。