LEARN: A Unified Framework for Multi-Task Domain Adapt Few-Shot Learning
- URL: http://arxiv.org/abs/2412.16275v1
- Date: Fri, 20 Dec 2024 17:16:15 GMT
- Title: LEARN: A Unified Framework for Multi-Task Domain Adapt Few-Shot Learning
- Authors: Bharadwaj Ravichandran, Alexander Lynch, Sarah Brockman, Brandon RichardWebster, Dawei Du, Anthony Hoogs, Christopher Funk,
- Abstract summary: We present the first unified framework that combines domain adaptation for the few-shot learning setting across 3 different tasks.
Our framework is highly modular with the capability to support few-shot learning with/without the inclusion of domain adaptation.
- Score: 49.34200199155883
- License:
- Abstract: Both few-shot learning and domain adaptation sub-fields in Computer Vision have seen significant recent progress in terms of the availability of state-of-the-art algorithms and datasets. Frameworks have been developed for each sub-field; however, building a common system or framework that combines both is something that has not been explored. As part of our research, we present the first unified framework that combines domain adaptation for the few-shot learning setting across 3 different tasks - image classification, object detection and video classification. Our framework is highly modular with the capability to support few-shot learning with/without the inclusion of domain adaptation depending on the algorithm. Furthermore, the most important configurable feature of our framework is the on-the-fly setup for incremental $n$-shot tasks with the optional capability to configure the system to scale to a traditional many-shot task. With more focus on Self-Supervised Learning (SSL) for current few-shot learning approaches, our system also supports multiple SSL pre-training configurations. To test our framework's capabilities, we provide benchmarks on a wide range of algorithms and datasets across different task and problem settings. The code is open source has been made publicly available here: https://gitlab.kitware.com/darpa_learn/learn
Related papers
- EMPL: A novel Efficient Meta Prompt Learning Framework for Few-shot Unsupervised Domain Adaptation [22.586094394391747]
We propose a novel Efficient Meta Prompt Learning Framework for FS-UDA.
Within this framework, we use pre-trained CLIP model as the feature learning base model.
Our method has the large improvement of at least 15.4% on 5-way 1-shot and 8.7% on 5-way 5-shot, compared with the state-of-the-art methods.
arXiv Detail & Related papers (2024-07-04T17:13:06Z) - A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection [59.21990697929617]
Humans tend to mine objects by learning from a group of images or several frames of video since we live in a dynamic world.
Previous approaches design different networks on similar tasks separately, and they are difficult to apply to each other.
We introduce a unified framework to tackle these issues, term as UFO (UnifiedObject Framework for Co-Object Framework)
arXiv Detail & Related papers (2022-03-09T13:35:19Z) - MFNet: Multi-class Few-shot Segmentation Network with Pixel-wise Metric
Learning [34.059257121606336]
This work focuses on few-shot semantic segmentation, which is still a largely unexplored field.
We first present a novel multi-way encoding and decoding architecture which effectively fuses multi-scale query information and multi-class support information into one query-support embedding.
Experiments on standard benchmarks PASCAL-5i and COCO-20i show clear benefits of our method over the state of the art in few-shot segmentation.
arXiv Detail & Related papers (2021-10-30T11:37:36Z) - Bayesian Embeddings for Few-Shot Open World Recognition [60.39866770427436]
We extend embedding-based few-shot learning algorithms to the open-world recognition setting.
We benchmark our framework on open-world extensions of the common MiniImageNet and TieredImageNet few-shot learning datasets.
arXiv Detail & Related papers (2021-07-29T00:38:47Z) - Efficient Retrieval Optimized Multi-task Learning [16.189136169520424]
We propose a novel Retrieval Optimized Multi-task (ROM) framework for jointly training self-supervised tasks, knowledge retrieval, and extractive question answering.
Our ROM approach presents a unified and generalizable framework that enables scaling efficiently to multiple tasks.
Using our framework, we achieve comparable or better performance than recent methods on QA, while drastically reducing the number of parameters.
arXiv Detail & Related papers (2021-04-20T17:16:34Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
We propose a unified distribution alignment strategy for long-tail visual recognition.
We then introduce a generalized re-weight method in the two-stage learning to balance the class prior.
Our approach achieves the state-of-the-art results across all four recognition tasks with a simple and unified framework.
arXiv Detail & Related papers (2021-03-30T14:09:53Z) - Attentive Feature Reuse for Multi Task Meta learning [17.8055398673228]
We develop new algorithms for simultaneous learning of multiple tasks.
We propose an attention mechanism to dynamically specialize the network, at runtime, for each task.
Our method improves performance on new, previously unseen environments.
arXiv Detail & Related papers (2020-06-12T19:33:11Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
We propose to incorporate neural architecture search (NAS) into general-purpose multi-task learning (GP-MTL)
In order to adapt to different task combinations, we disentangle the GP-MTL networks into single-task backbones.
We also propose a novel single-shot gradient-based search algorithm that closes the performance gap between the searched architectures.
arXiv Detail & Related papers (2020-03-31T09:49:14Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.