論文の概要: Benchmarking LLMs and SLMs for patient reported outcomes
- arxiv url: http://arxiv.org/abs/2412.16291v1
- Date: Fri, 20 Dec 2024 19:01:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:06.896168
- Title: Benchmarking LLMs and SLMs for patient reported outcomes
- Title(参考訳): 患者報告結果に対するLSMとSLMのベンチマーク
- Authors: Matteo Marengo, Jarod Lévy, Jean-Emmanuel Bibault,
- Abstract要約: 本研究は,放射線治療の文脈における患者報告Q&Aフォームの要約のためのLSMに対して,いくつかのSLMをベンチマークする。
各種測定値を用いて精度と信頼性を評価する。
この調査結果は、高度な医療タスクのためのSLMの約束と制限の両方を強調し、より効率的でプライバシ保護のAI駆動型ヘルスケアソリューションを促進する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: LLMs have transformed the execution of numerous tasks, including those in the medical domain. Among these, summarizing patient-reported outcomes (PROs) into concise natural language reports is of particular interest to clinicians, as it enables them to focus on critical patient concerns and spend more time in meaningful discussions. While existing work with LLMs like GPT-4 has shown impressive results, real breakthroughs could arise from leveraging SLMs as they offer the advantage of being deployable locally, ensuring patient data privacy and compliance with healthcare regulations. This study benchmarks several SLMs against LLMs for summarizing patient-reported Q\&A forms in the context of radiotherapy. Using various metrics, we evaluate their precision and reliability. The findings highlight both the promise and limitations of SLMs for high-stakes medical tasks, fostering more efficient and privacy-preserving AI-driven healthcare solutions.
- Abstract(参考訳): LLMは医療分野を含む多くのタスクの実行を変革してきた。
これらのうち、患者報告された結果(PRO)を簡潔な自然言語レポートに要約することは、重要な患者の関心事に集中し、意味のある議論により多くの時間を費やすことができるため、臨床医にとって特に関心がある。
GPT-4のようなLCMを使った既存の研究は目覚ましい結果を示しているが、SLMをローカルにデプロイできるという利点を提供し、患者のデータのプライバシーと医療規制の遵守を保証することによって、真のブレークスルーが生まれる可能性がある。
本研究は,放射線療法の文脈における患者報告Q\&Aフォームの要約のためのLSMに対して,いくつかのSLMをベンチマークする。
各種測定値を用いて精度と信頼性を評価する。
この調査結果は、高度な医療タスクのためのSLMの約束と限界の両方を強調し、より効率的でプライバシ保護のAI駆動型ヘルスケアソリューションを育む。
関連論文リスト
- D-NLP at SemEval-2024 Task 2: Evaluating Clinical Inference Capabilities of Large Language Models [5.439020425819001]
大規模言語モデル(LLM)は、様々なタスクにおける顕著なパフォーマンスのために、大きな注目を集め、広く使われている。
しかし、幻覚、事実的矛盾、数値的定量的推論の限界などの問題を含む、彼ら自身の課題は存在しない。
論文 参考訳(メタデータ) (2024-05-07T10:11:14Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - LLM on FHIR -- Demystifying Health Records [0.32985979395737786]
本研究では,大規模言語モデル(LLM)を用いた健康記録と対話可能なアプリを開発した。
このアプリは、医療データを患者フレンドリーな言語に効果的に翻訳し、その反応を異なる患者プロファイルに適応させることができた。
論文 参考訳(メタデータ) (2024-01-25T17:45:34Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - Retrieving Evidence from EHRs with LLMs: Possibilities and Challenges [18.56314471146199]
時間的制約を伴って患者に関連付けられた大量のメモは、実質的に不可能な証拠を手作業で特定する。
患者EHRにおける非構造的証拠を効率よく回収・要約するためのメカニズムとして, LLMを用いたゼロショット戦略を提案し, 評価した。
論文 参考訳(メタデータ) (2023-09-08T18:44:47Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
大型言語モデル(LLM)は、人間レベルの流布で自然言語の指示に従うことができる。
医療のための現実的なテキスト生成タスクにおけるLCMの評価は依然として困難である。
我々は、EHRデータのための983の自然言語命令のベンチマークデータセットであるMedAlignを紹介する。
論文 参考訳(メタデータ) (2023-08-27T12:24:39Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting [24.201549275369487]
本稿では,大規模言語モデルの専門知識を活用して,プライバシ制限シナリオ下での医療タスクにおけるSLM性能を向上させる手法を提案する。
具体的には、医療データからキーワードを抽出し、LLMに医療知識集約的なコンテキストを生成することで、患者のプライバシ問題を緩和する。
本手法は,3つの医療知識集約タスクにおいて,数ショットとフルトレーニングの双方において,パフォーマンスを著しく向上させる。
論文 参考訳(メタデータ) (2023-05-22T05:14:38Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。