論文の概要: Texture- and Shape-based Adversarial Attacks for Vehicle Detection in Synthetic Overhead Imagery
- arxiv url: http://arxiv.org/abs/2412.16358v1
- Date: Fri, 20 Dec 2024 21:39:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:54.406021
- Title: Texture- and Shape-based Adversarial Attacks for Vehicle Detection in Synthetic Overhead Imagery
- Title(参考訳): 合成オーバーヘッド画像における車両検出のためのテクスチャーと形状に基づく対向攻撃
- Authors: Mikael Yeghiazaryan, Sai Abhishek Siddhartha Namburu, Emily Kim, Stanislav Panev, Celso de Melo, Brent Lance, Fernando De la Torre, Jessica K. Hodgins,
- Abstract要約: テクスチャおよび/または形状における敵攻撃(AA)の実践的実装制約を提案する。
これらの制約には、ピクセル化、マスキング、テクスチャの色パレットの制限、形状の変更の制限が含まれる。
その結果,本ソリューションの有効性を実証し,実用性と性能のトレードオフを明らかにした。
- 参考スコア(独自算出の注目度): 45.86972498652365
- License:
- Abstract: Detecting vehicles in aerial images can be very challenging due to complex backgrounds, small resolution, shadows, and occlusions. Despite the effectiveness of SOTA detectors such as YOLO, they remain vulnerable to adversarial attacks (AAs), compromising their reliability. Traditional AA strategies often overlook the practical constraints of physical implementation, focusing solely on attack performance. Our work addresses this issue by proposing practical implementation constraints for AA in texture and/or shape. These constraints include pixelation, masking, limiting the color palette of the textures, and constraining the shape modifications. We evaluated the proposed constraints through extensive experiments using three widely used object detector architectures, and compared them to previous works. The results demonstrate the effectiveness of our solutions and reveal a trade-off between practicality and performance. Additionally, we introduce a labeled dataset of overhead images featuring vehicles of various categories. We will make the code/dataset public upon paper acceptance.
- Abstract(参考訳): 空中画像で車両を検出することは、複雑な背景、小さな解像度、影、閉塞のために非常に難しい。
YOLOのようなSOTA検出器の有効性にもかかわらず、敵攻撃(AA)に弱いままであり、信頼性を損なう。
従来のAA戦略は、攻撃のパフォーマンスにのみ焦点をあてて、物理実装の実践的な制約を見落としていることが多い。
我々の研究は、テクスチャおよび/または形状におけるAAの実践的実装制約を提案し、この問題に対処する。
これらの制約には、ピクセル化、マスキング、テクスチャの色パレットの制限、形状の変更の制限が含まれる。
提案した制約を3つの広く使用されているオブジェクト検出器アーキテクチャを用いて広範囲な実験により評価し,それらを以前の研究と比較した。
その結果,本ソリューションの有効性を実証し,実用性と性能のトレードオフを明らかにした。
さらに,様々なカテゴリーの車両を特徴付けるオーバヘッド画像のラベル付きデータセットを導入する。
受理後、コード/データセットを公開します。
関連論文リスト
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
Diverse hArmful Responses (RADAR) を用いた新しい laRge-scale Adervsarial 画像データセットを構築した。
そこで我々は,視覚言語モデル (VLM) の隠れ状態から抽出した1つのベクトルを利用して,入力中の良質な画像に対して対向画像を検出する,新しいiN時間埋め込み型AdveRSarial Image Detectction (NEARSIDE) 法を開発した。
論文 参考訳(メタデータ) (2024-10-30T10:33:10Z) - Object Detection in Aerial Images in Scarce Data Regimes [0.0]
小さな物体は、より多数の空中画像において、自然画像と空中画像の間の明らかなパフォーマンスギャップの原因となっている。
FSOD法の訓練と評価を改善するスケール適応型ボックス類似度基準を提案する。
また、計量学習と微調整に基づく2つの異なるアプローチによる汎用FSODにも貢献する。
論文 参考訳(メタデータ) (2023-10-16T14:16:47Z) - CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle
Components [77.33782775860028]
車両の新たな総合ベンチマークであるCarPatchを紹介する。
内在カメラパラメータと外在カメラパラメータを付加した画像のセットに加えて、各ビューに対して対応する深度マップとセマンティックセグメンテーションマスクが生成されている。
グローバルとパートベースのメトリクスは、いくつかの最先端技術を評価し、比較し、より良い特徴付けるために定義され、使われてきた。
論文 参考訳(メタデータ) (2023-07-24T11:59:07Z) - To Make Yourself Invisible with Adversarial Semantic Contours [47.755808439588094]
逆セマンティック・コンター(英: Adversarial Semantic Contour、ASC)は、物体の輪郭の前に騙されたスパース・アタックのベイズ的定式化の見積もりである。
ASCは、異なるアーキテクチャを持つ9つの近代検出器の予測を損なう可能性があることを示す。
我々は、様々なアーキテクチャを持つ物体検出器の共通弱点である輪郭について注意を払って結論付けた。
論文 参考訳(メタデータ) (2023-03-01T07:22:39Z) - Geometrically Adaptive Dictionary Attack on Face Recognition [23.712389625037442]
顔認証に対するクエリ効率の良いブラックボックス攻撃のための戦略を提案する。
中心となるアイデアは、UVテクスチャマップに逆方向の摂動を作り、それを画像の顔に投影することです。
LFWデータセットとCPLFWデータセットの実験において、圧倒的な性能改善を示す。
論文 参考訳(メタデータ) (2021-11-08T10:26:28Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z) - EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios
using Aerial Imagery [3.8902657229395894]
航空画像における物体方向情報を用いた多種多様な車両検出のための大規模データセットを提案する。
様々なカメラセンサー、解像度、飛行高度、天候、照明、ヘイズ、シャドウ、時間、都市、国、オクルージョン、カメラアングルを備えた、さまざまな現実世界の状況からなる高解像度の空中画像が特徴である。
215,986のインスタンスに4つのポイントと向きで定義された向き付きバウンディングボックスがアノテートされており、このタスクでこれまでで最大のデータセットとなっている。
また、ヘイズやシャドウ除去の研究や、超高解像度やインペイントの応用も支援している。
論文 参考訳(メタデータ) (2020-07-12T23:00:30Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。