論文の概要: A Generalizable Anomaly Detection Method in Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2412.16447v1
- Date: Sat, 21 Dec 2024 02:38:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:07.756158
- Title: A Generalizable Anomaly Detection Method in Dynamic Graphs
- Title(参考訳): 動的グラフにおける一般化可能な異常検出法
- Authors: Xiao Yang, Xuejiao Zhao, Zhiqi Shen,
- Abstract要約: GeneralDyGは、時間的エゴグラフをサンプリングし、構造的特徴と時間的特徴を逐次抽出する手法である。
提案したGeneralDyGは,4つの実世界のデータセット上で最先端の手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 7.48376611870513
- License:
- Abstract: Anomaly detection aims to identify deviations from normal patterns within data. This task is particularly crucial in dynamic graphs, which are common in applications like social networks and cybersecurity, due to their evolving structures and complex relationships. Although recent deep learning-based methods have shown promising results in anomaly detection on dynamic graphs, they often lack of generalizability. In this study, we propose GeneralDyG, a method that samples temporal ego-graphs and sequentially extracts structural and temporal features to address the three key challenges in achieving generalizability: Data Diversity, Dynamic Feature Capture, and Computational Cost. Extensive experimental results demonstrate that our proposed GeneralDyG significantly outperforms state-of-the-art methods on four real-world datasets.
- Abstract(参考訳): 異常検出は、データ内の通常のパターンから逸脱を特定することを目的としている。
このタスクは、ソーシャルネットワークやサイバーセキュリティといったアプリケーションで一般的な動的グラフにおいて特に重要である。
最近のディープラーニングに基づく手法は、動的グラフの異常検出において有望な結果を示しているが、一般化性に欠けることが多い。
本研究では,データ多様性,動的特徴キャプチャ,計算コストの3つの課題に対処するため,時間的エゴグラフを抽出し,構造的特徴と時間的特徴を逐次抽出する手法であるGeneralDyGを提案する。
大規模な実験結果から,提案したGeneralDyGは,4つの実世界のデータセット上で最先端の手法を著しく上回っていることがわかった。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Pattern-Based Time-Series Risk Scoring for Anomaly Detection and Alert Filtering -- A Predictive Maintenance Case Study [3.508168174653255]
本稿では,逐次パターンの類似性に基づいて,異常検出と警告フィルタリングを高速かつ効率的に行う手法を提案する。
本稿では, 大規模産業システムにおける異常検出を含む様々な目的で, このアプローチをどのように活用するかを示す。
論文 参考訳(メタデータ) (2024-05-24T20:27:45Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
動的グラフにおける異常検出は、グラフ構造と属性の時間的進化によって大きな課題となる。
時空間記憶強調グラフオートエンコーダ(STRIPE)について紹介する。
STRIPEは、AUCスコアが5.8%改善し、トレーニング時間が4.62倍速く、既存の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-03-14T02:26:10Z) - GADY: Unsupervised Anomaly Detection on Dynamic Graphs [18.1896489628884]
本稿では,従来の離散的手法の限界を突破する細粒度情報を取得するための連続的動的グラフモデルを提案する。
第2の課題として、負の相互作用を生成するためにジェネレーティブ・アドバイサル・ネットワーク(Generative Adversarial Networks)を開拓した。
提案したGADYは,3つの実世界のデータセットにおいて,従来の最先端手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-10-25T05:27:45Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - DAGAD: Data Augmentation for Graph Anomaly Detection [57.92471847260541]
本稿では、属性グラフのための新しいデータ拡張ベースのグラフ異常検出(DAGAD)フレームワークを考案する。
3つのデータセットに関する一連の実験は、DAGADが様々な主に使用されるメトリクスに関して、10の最先端のベースライン検出器より優れていることを証明している。
論文 参考訳(メタデータ) (2022-10-18T11:28:21Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
異常検出は、医療や金融システムなど、さまざまな現実世界のアプリケーションにおいて重要な役割を担っている。
正規データと異常データの間の異常スコアの差を学習・拡大するために,スコア誘導正規化を用いた新しいスコアネットワークを提案する。
次に,スコア誘導型オートエンコーダ(SG-AE)を提案する。
論文 参考訳(メタデータ) (2021-09-10T06:14:53Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
DYnamic graph(TADDY)のためのトランスフォーマーを用いた新しい異常検出フレームワークを提案する。
本フレームワークは,進化するグラフストリームにおいて,各ノードの構造的役割と時間的役割をよりよく表現するための包括的ノード符号化戦略を構築する。
提案するTADDYフレームワークは,4つの実世界のデータセットに対して,最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-06-18T02:27:19Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。