論文の概要: Unsupervised Domain Adaptive Person Search via Dual Self-Calibration
- arxiv url: http://arxiv.org/abs/2412.16506v1
- Date: Sat, 21 Dec 2024 06:54:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:45.652130
- Title: Unsupervised Domain Adaptive Person Search via Dual Self-Calibration
- Title(参考訳): 二重自己校正による教師なしドメイン適応型人物探索
- Authors: Linfeng Qi, Huibing Wang, Jiqing Zhang, Jinjia Peng, Yang Wang,
- Abstract要約: Unsupervised Domain Adaptive (UDA) パーソンサーチは、ラベル付きソースドメインデータセットでトレーニングされたモデルを、追加のアノテーションなしでターゲットドメインデータセットに採用することに焦点を当てている。
最も効果的なUDA人物探索法は、典型的には、ソースドメインとクラスタリングから派生した擬似ラベルの基底真理を利用する。
ノイズの多い擬似ラベルの干渉を効果的に除去するUDA人物探索のためのDSCA(Dual Self-Calibration)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 12.158126976694488
- License:
- Abstract: Unsupervised Domain Adaptive (UDA) person search focuses on employing the model trained on a labeled source domain dataset to a target domain dataset without any additional annotations. Most effective UDA person search methods typically utilize the ground truth of the source domain and pseudo-labels derived from clustering during the training process for domain adaptation. However, the performance of these approaches will be significantly restricted by the disrupting pseudo-labels resulting from inter-domain disparities. In this paper, we propose a Dual Self-Calibration (DSCA) framework for UDA person search that effectively eliminates the interference of noisy pseudo-labels by considering both the image-level and instance-level features perspectives. Specifically, we first present a simple yet effective Perception-Driven Adaptive Filter (PDAF) to adaptively predict a dynamic filter threshold based on input features. This threshold assists in eliminating noisy pseudo-boxes and other background interference, allowing our approach to focus on foreground targets and avoid indiscriminate domain adaptation. Besides, we further propose a Cluster Proxy Representation (CPR) module to enhance the update strategy of cluster representation, which mitigates the pollution of clusters from misidentified instances and effectively streamlines the training process for unlabeled target domains. With the above design, our method can achieve state-of-the-art (SOTA) performance on two benchmark datasets, with 80.2% mAP and 81.7% top-1 on the CUHK-SYSU dataset, with 39.9% mAP and 81.6% top-1 on the PRW dataset, which is comparable to or even exceeds the performance of some fully supervised methods. Our source code is available at https://github.com/whbdmu/DSCA.
- Abstract(参考訳): Unsupervised Domain Adaptive (UDA) パーソンサーチは、ラベル付きソースドメインデータセットでトレーニングされたモデルを、追加のアノテーションなしでターゲットドメインデータセットに採用することに焦点を当てている。
最も効果的なUDA人物探索法は、典型的には、ソースドメインと、ドメイン適応のトレーニングプロセス中にクラスタリングから派生した擬似ラベルの基底真理を利用する。
しかし、これらの手法の性能はドメイン間格差による擬似ラベルの破壊によって著しく制限される。
本稿では,UDA人物探索のためのDSCA(Dual Self-Calibration)フレームワークを提案する。
具体的には、入力特徴に基づいて動的フィルタ閾値を適応的に予測する、単純で効果的なパーセプション駆動適応フィルタ(PDAF)を提案する。
この閾値は、ノイズの多い擬似箱やその他のバックグラウンド干渉を取り除くのに役立ち、我々のアプローチは前景のターゲットに集中し、ドメイン適応の不特定を避けることができる。
さらに,クラスタ表現の更新戦略を強化するために,クラスタプロキシ表現(CPR)モジュールを提案する。
以上の設計により, CUHK-SYSUデータセットでは80.2% mAP, 81.7% Top-1, PRWデータセットでは39.9% mAP, 81.6% Top-1の2つのベンチマークデータセットでは, 最先端(SOTA)のパフォーマンスを達成できた。
ソースコードはhttps://github.com/whbdmu/DSCA.comで公開されています。
関連論文リスト
- Fast One-Stage Unsupervised Domain Adaptive Person Search [17.164485293539833]
教師なしの人物探索は、アノテーションなしでシーンイメージのギャラリーセットから特定の対象人物をローカライズすることを目的としている。
本稿では,補完的なドメイン適応とラベル適応を統合したファストワンステージ非教師者探索(FOUS)を提案する。
Fousは、CUHK-SYSUとPRWという2つのベンチマークデータセット上で、最先端(SOTA)のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-05-05T07:15:47Z) - Generative Domain Adaptation for Face Anti-Spoofing [38.12738183385737]
教師なしドメイン適応(UDA)に基づくアンチスプーフィングアプローチは、ターゲットシナリオに対する有望なパフォーマンスのために注目を集めている。
既存のUDA FASメソッドは、通常、セマンティックな高レベルの機能の分布を整列することで、トレーニングされたモデルをターゲットドメインに適合させる。
対象データをモデルに直接適合させ、画像翻訳により対象データをソースドメインスタイルにスタイリングし、さらに、訓練済みのソースモデルにスタイリングされたデータを入力して分類する、UDA FASの新しい視点を提案する。
論文 参考訳(メタデータ) (2022-07-20T16:24:57Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
自動音声認識(ASR)のクロスドメイン性能は,トレーニングとテストのミスマッチにより著しく損なわれる可能性がある。
従来, 自己監督学習 (SSL) や擬似ラベル学習 (PL) は, 未ラベルデータの自己監督を利用してUDAに有効であることが示された。
この研究は、事前学習および微調整のパラダイムにおいて、ラベルなしデータを完全に活用する体系的なUDAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-20T14:02:53Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
ソースフリー領域適応画像分割のための2段階のアプローチを提案する。
我々は,高エントロピー領域を抑えつつ,ターゲット固有の擬似ラベルを生成することに注力する。
第2段階では、タスク固有の表現にネットワークを適用することに重点を置いている。
論文 参考訳(メタデータ) (2022-03-29T17:50:22Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
セマンティックセグメンテーションにおけるクロスドメインとイントラドメインのギャップに対処する2段階の半教師付き二重ドメイン適応(SSDDA)手法を提案する。
提案手法は,2つの共通合成-実合成セマンティックセグメンテーションベンチマークにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-20T16:13:00Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Uncertainty-aware Clustering for Unsupervised Domain Adaptive Object
Re-identification [123.75412386783904]
最先端のオブジェクトRe-IDアプローチでは、クラスタリングアルゴリズムを採用して、ラベルのないターゲットドメインの擬似ラベルを生成する。
UDAタスクのための不確実性対応クラスタリングフレームワーク(UCF)を提案する。
我々のUCF法は、オブジェクトRe-IDのための複数のUDAタスクにおける最先端のパフォーマンスを一貫して達成する。
論文 参考訳(メタデータ) (2021-08-22T09:57:14Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
半教師付き領域適応(SSDA)法は,大規模な画像分類タスクにおいて大きな可能性を示している。
本稿では、ドメイン間およびドメイン内セマンティック情報を効果的に伝達することにより、この問題に対処する新しい効果的な方法を提案する。
ソースコードと事前訓練されたモデルも間もなくリリースされる予定です。
論文 参考訳(メタデータ) (2020-12-04T14:28:19Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。