Anchor Learning with Potential Cluster Constraints for Multi-view Clustering
- URL: http://arxiv.org/abs/2412.16519v1
- Date: Sat, 21 Dec 2024 07:43:05 GMT
- Title: Anchor Learning with Potential Cluster Constraints for Multi-view Clustering
- Authors: Yawei Chen, Huibing Wang, Jinjia Peng, Yang Wang,
- Abstract summary: Anchor-based multi-view clustering (MVC) has received extensive attention due to its efficient performance.
We propose a noval method termed Anchor Learning with Potential Cluster Constraints for Multi-view Clustering (ALPC) method.
- Score: 11.536710289572552
- License:
- Abstract: Anchor-based multi-view clustering (MVC) has received extensive attention due to its efficient performance. Existing methods only focus on how to dynamically learn anchors from the original data and simultaneously construct anchor graphs describing the relationships between samples and perform clustering, while ignoring the reality of anchors, i.e., high-quality anchors should be generated uniformly from different clusters of data rather than scattered outside the clusters. To deal with this problem, we propose a noval method termed Anchor Learning with Potential Cluster Constraints for Multi-view Clustering (ALPC) method. Specifically, ALPC first establishes a shared latent semantic module to constrain anchors to be generated from specific clusters, and subsequently, ALPC improves the representativeness and discriminability of anchors by adapting the anchor graph to capture the common clustering center of mass from samples and anchors, respectively. Finally, ALPC combines anchor learning and graph construction into a unified framework for collaborative learning and mutual optimization to improve the clustering performance. Extensive experiments demonstrate the effectiveness of our proposed method compared to some state-of-the-art MVC methods. Our source code is available at https://github.com/whbdmu/ALPC.
Related papers
- Discriminative Anchor Learning for Efficient Multi-view Clustering [59.11406089896875]
We propose discriminative anchor learning for multi-view clustering (DALMC)
We learn discriminative view-specific feature representations according to the original dataset.
We build anchors from different views based on these representations, which increase the quality of the shared anchor graph.
arXiv Detail & Related papers (2024-09-25T13:11:17Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Anchor-free Clustering based on Anchor Graph Factorization [17.218481911995365]
We introduce a novel method termed Anchor-free Clustering based on Anchor Graph Factorization (AFCAGF)
AFCAGF innovates in learning the anchor graph, requiring only the computation of pairwise distances between samples.
We evolve the concept of the membership matrix between cluster centers and samples in FKM into an anchor graph encompassing multiple anchor points and samples.
arXiv Detail & Related papers (2024-02-24T02:16:42Z) - CCFC: Bridging Federated Clustering and Contrastive Learning [9.91610928326645]
We propose a new federated clustering method named cluster-contrastive federated clustering (CCFC)
CCFC shows superior performance in handling device failures from a practical viewpoint.
arXiv Detail & Related papers (2024-01-12T15:26:44Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
arXiv Detail & Related papers (2023-08-31T12:12:30Z) - Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification [29.167783500369442]
Unsupervised Re-ID methods aim at learning robust and discriminative features from unlabeled data.
We propose a dynamic clustering and cluster contrastive learning (DCCC) method.
Experiments on several widely used public datasets validate the effectiveness of our proposed DCCC.
arXiv Detail & Related papers (2023-03-13T01:56:53Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.