Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification
- URL: http://arxiv.org/abs/2303.06810v1
- Date: Mon, 13 Mar 2023 01:56:53 GMT
- Title: Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification
- Authors: Ziqi He, Mengjia Xue, Yunhao Du, Zhicheng Zhao, Fei Su
- Abstract summary: Unsupervised Re-ID methods aim at learning robust and discriminative features from unlabeled data.
We propose a dynamic clustering and cluster contrastive learning (DCCC) method.
Experiments on several widely used public datasets validate the effectiveness of our proposed DCCC.
- Score: 29.167783500369442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Re-ID methods aim at learning robust and discriminative features
from unlabeled data. However, existing methods often ignore the relationship
between module parameters of Re-ID framework and feature distributions, which
may lead to feature misalignment and hinder the model performance. To address
this problem, we propose a dynamic clustering and cluster contrastive learning
(DCCC) method. Specifically, we first design a dynamic clustering parameters
scheduler (DCPS) which adjust the hyper-parameter of clustering to fit the
variation of intra- and inter-class distances. Then, a dynamic cluster
contrastive learning (DyCL) method is designed to match the cluster
representation vectors' weights with the local feature association. Finally, a
label smoothing soft contrastive loss ($L_{ss}$) is built to keep the balance
between cluster contrastive learning and self-supervised learning with low
computational consumption and high computational efficiency. Experiments on
several widely used public datasets validate the effectiveness of our proposed
DCCC which outperforms previous state-of-the-art methods by achieving the best
performance.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization [4.39139858370436]
This paper introduces an image clustering algorithm based on self-supervised pretrained models and latent feature distribution optimization.
Our approach outperforms the latest clustering algorithms and achieves state-of-the-art clustering results.
arXiv Detail & Related papers (2024-08-04T04:08:21Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Dual Cluster Contrastive learning for Person Re-Identification [78.42770787790532]
We formulate a unified cluster contrastive framework, named Dual Cluster Contrastive learning (DCC)
DCC maintains two types of memory banks: individual and centroid cluster memory banks.
It can be easily applied for unsupervised or supervised person ReID.
arXiv Detail & Related papers (2021-12-09T02:43:25Z) - Mind Your Clever Neighbours: Unsupervised Person Re-identification via
Adaptive Clustering Relationship Modeling [19.532602887109668]
Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models.
Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering.
To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID.
arXiv Detail & Related papers (2021-12-03T10:55:07Z) - Hybrid Dynamic Contrast and Probability Distillation for Unsupervised
Person Re-Id [109.1730454118532]
Unsupervised person re-identification (Re-Id) has attracted increasing attention due to its practical application in the read-world video surveillance system.
We present the hybrid dynamic cluster contrast and probability distillation algorithm.
It formulates the unsupervised Re-Id problem into an unified local-to-global dynamic contrastive learning and self-supervised probability distillation framework.
arXiv Detail & Related papers (2021-09-29T02:56:45Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Clustering-friendly Representation Learning via Instance Discrimination
and Feature Decorrelation [0.0]
We propose a clustering-friendly representation learning method using instance discrimination and feature decorrelation.
In evaluations of image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy of 81.5% and 95.4%, respectively.
arXiv Detail & Related papers (2021-05-31T22:59:31Z) - Image Clustering using an Augmented Generative Adversarial Network and
Information Maximization [9.614694312155798]
We propose a deep clustering framework consisting of a modified generative adversarial network (GAN) and an auxiliary classifier.
The proposed method significantly outperforms state-of-the-art clustering methods on CIFAR-10 and CIFAR-100, and is competitive on the STL10 and MNIST datasets.
arXiv Detail & Related papers (2020-11-08T22:20:33Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.