論文の概要: Self-guided Knowledgeable Network of Thoughts: Amplifying Reasoning with Large Language Models
- arxiv url: http://arxiv.org/abs/2412.16533v1
- Date: Sat, 21 Dec 2024 08:19:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:58.386575
- Title: Self-guided Knowledgeable Network of Thoughts: Amplifying Reasoning with Large Language Models
- Title(参考訳): 自己誘導型思考の知識ネットワーク:大規模言語モデルによる推論の増幅
- Authors: Chao-Chi Chen, Chin-Yuan Yeh, Hsi-Wen Chen, De-Nian Yang, Ming-Syan Chen,
- Abstract要約: kNoTは、Chain-of-Thought(CoT)、Tree of Thoughts(ToT)、Graph of Thoughts(GoT)といった既存のパラダイムを超えて、大きな言語モデル(LLM)の機能を向上させるプロンプトスキームである。
- 参考スコア(独自算出の注目度): 19.379144918877255
- License:
- Abstract: We introduce Knowledgeable Network of Thoughts (kNoT): a prompt scheme that advances the capabilities of large language models (LLMs) beyond existing paradigms like Chain-of-Thought (CoT), Tree of Thoughts (ToT), and Graph of Thoughts (GoT). The key innovation of kNoT is the LLM Workflow Template (LWT), which allows for an executable plan to be specified by LLMs for LLMs. LWT allows these plans to be arbitrary networks, where single-step LLM operations are nodes, and edges correspond to message passing between these steps. Furthermore, LWT supports selection of individual elements through indexing, facilitating kNoT to produce intricate plans where each LLM operation can be limited to elementary operations, greatly enhancing reliability over extended task sequences. We demonstrate that kNoT significantly outperforms the state of the art on six use cases, while reducing the need for extensive prompt engineering. For instance, kNoT finds 92% accuracy for sorting 32 numbers over 12% and 31% for ToT and GoT, while utilizing up to 84.4% and 87.3% less task-specific prompts, respectively.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)の能力を,CoT(Chain-of-Thought)やToT(Tree of Thoughts),GoT(Graph of Thoughts)といった既存のパラダイムを超えて向上させるプロンプトスキーム「Knowledgeable Network of Thoughts(kNoT)」を紹介する。
kNoT の重要な革新は LLM Workflow Template (LWT) である。
LWTはこれらの計画を任意のネットワークとし、単一ステップのLLM操作はノードであり、エッジはこれらのステップ間のメッセージパッシングに対応する。
さらに、LWTはインデックス化による個々の要素の選択をサポートし、kNoTは各LLM操作を基本操作に制限できる複雑な計画を生成することができ、拡張されたタスクシーケンスよりも信頼性が大幅に向上する。
我々は、kNoTが6つのユースケースにおいて最先端の技術を著しく上回り、広範囲なプロンプトエンジニアリングの必要性を低減していることを示した。
例えば kNoT は、ToT と GoT の 32 個の番号のソートに 92% の精度があり、最大84.4% と87.3% のタスク固有のプロンプトをそれぞれ利用している。
関連論文リスト
- Planning Anything with Rigor: General-Purpose Zero-Shot Planning with LLM-based Formalized Programming [13.246017517159043]
大規模言語モデル(LLM)は近年,計画問題の解決に強い可能性を示している。
LLpreview は LLM を利用して,計画上の問題から重要な情報を抽出し,それらをスクラッチから最適化するフレームワークである。
GPToとClaude 3.5 Sonnetの9つのタスクに対して,LLpreviewが平均83.7%,86.8%の最適率で達成できることを実証した。
論文 参考訳(メタデータ) (2024-10-15T23:20:54Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
我々は,言語モデル(LLM)の驚くべきパワーを活用して課題を解決することを検討する。
LLaMA2を微調整し,既存のエキスパートアノテートデータセットから自動生成したトレーニングデータを用いてTAT-LLM言語モデルを開発する。
論文 参考訳(メタデータ) (2024-01-24T04:28:50Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
As-Needed Decomposition and Planning for Complex Tasks (ADaPT)について紹介する。
ADaPTは、Large Language Modelsがそれらを実行できない場合、複雑なサブタスクを明示的に計画し、分解する。
以上の結果から,ADaPTは強いベースラインを確立した。
論文 参考訳(メタデータ) (2023-11-08T17:59:15Z) - Chain-of-Thought Tuning: Masked Language Models can also Think Step By
Step in Natural Language Understanding [25.36416774024584]
Chain-of-Thought (CoT) は、Large Language Models (LLM) を自然言語形式の中間段階を通して多段階の推論へと導く技術である。
本稿では,即時チューニングに基づく2段階の推論フレームワークとしてChain-of-Thought (CoTT)を提案する。
論文 参考訳(メタデータ) (2023-10-18T05:39:20Z) - Chain-of-Symbol Prompting Elicits Planning in Large Langauge Models [47.210211555783836]
自然言語計画と行動(Natala)という,一連の新しいタスクからなるベンチマークを提案する。
現在、ChatGPTのようなLLMには複雑な計画能力がないことが分かっています。
本稿では,凝縮した記号空間表現を持つ複雑な環境を表現するCoS(Chain-of-Symbol Prompting)を提案する。
論文 参考訳(メタデータ) (2023-05-17T15:07:50Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - Large Language Models are Zero-Shot Reasoners [28.6899375595088]
思考の連鎖(CoT)プロンプトは、ステップバイステップの回答例を通して複雑な多段階推論を引き出す手法である。
LLMは、各回答の前に単に「ステップバイステップ」を追加して、まともなゼロショット推論子であることを示す。
実験結果から,同一のプロンプトテンプレートを用いたZero-shot-CoTはゼロショットLLM性能を著しく上回ることがわかった。
論文 参考訳(メタデータ) (2022-05-24T09:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。