Quantum Approximate $k$-Minimum Finding
- URL: http://arxiv.org/abs/2412.16586v1
- Date: Sat, 21 Dec 2024 11:21:15 GMT
- Title: Quantum Approximate $k$-Minimum Finding
- Authors: Minbo Gao, Zhengfeng Ji, Qisheng Wang,
- Abstract summary: We propose an optimal quantum $k$-minimum finding algorithm that works with approximate values for all $k geq 1$.
We present efficient quantum algorithms for identifying the $k$ smallest expectation values among multiple observables and for determining the $k$ lowest ground state energies of a Hamiltonian.
- Score: 2.810947654192424
- License:
- Abstract: Quantum $k$-minimum finding is a fundamental subroutine with numerous applications in combinatorial problems and machine learning. Previous approaches typically assume oracle access to exact function values, making it challenging to integrate this subroutine with other quantum algorithms. In this paper, we propose an (almost) optimal quantum $k$-minimum finding algorithm that works with approximate values for all $k \geq 1$, extending a result of van Apeldoorn, Gily\'{e}n, Gribling, and de Wolf (FOCS 2017) for $k=1$. As practical applications of this algorithm, we present efficient quantum algorithms for identifying the $k$ smallest expectation values among multiple observables and for determining the $k$ lowest ground state energies of a Hamiltonian with a known eigenbasis.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Fast Quantum Algorithms for Trace Distance Estimation [8.646488471216262]
We propose efficient quantum algorithms for estimating the trace distance within additive error $varepsilon$ between mixed quantum states of rank $r$.
We show that the decision version of low-rank trace distance estimation is $mathsfBQP$-complete.
arXiv Detail & Related papers (2023-01-17T10:16:14Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum Approximate Counting for Markov Chains and Application to
Collision Counting [0.0]
We show how to generalize the quantum approximate counting technique developed by Brassard, Hoyer and Tapp [ICALP 1998] to estimating the number of marked states of a Markov chain.
This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful "quantum walk based search" framework established by Magniez, Nayak, Roland and Santha.
arXiv Detail & Related papers (2022-04-06T03:04:42Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Quantum Algorithm for Fidelity Estimation [8.270684567157987]
For two unknown mixed quantum states $rho$ and $sigma$ in an $N$-dimensional space, computing their fidelity $F(rho,sigma)$ is a basic problem.
We propose a quantum algorithm that solves this problem in $namepoly(log (N), r, 1/varepsilon)$ time.
arXiv Detail & Related papers (2021-03-16T13:57:01Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Quantum $k$-nearest neighbors algorithm [0.0]
We present a quantum analog of classical $k$NN $-$ quantum $k$NN (Q$k$NN) $-$ based on fidelity as the similarity measure.
Unlike classical $k$NN and existing quantum $k$NN algorithms, the proposed algorithm can be directly used on quantum data.
arXiv Detail & Related papers (2020-03-20T10:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.