Concept Guided Co-saliency Objection Detection
- URL: http://arxiv.org/abs/2412.16609v1
- Date: Sat, 21 Dec 2024 12:47:12 GMT
- Title: Concept Guided Co-saliency Objection Detection
- Authors: Jiayi Zhu, Qing Guo, Felix Juefei-Xu, Yihao Huang, Yang Liu, Geguang Pu,
- Abstract summary: ConceptCoSOD is a novel concept-guided approach to co-saliency object detection.<n>We show that ConceptCoSOD significantly improves detection accuracy in challenging settings with considerable background distractions and object variability.
- Score: 22.82243087156918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of co-saliency object detection (Co-SOD) seeks to identify common, salient objects across a collection of images by examining shared visual features. However, traditional Co-SOD methods often encounter limitations when faced with diverse object variations (e.g., different postures) and irrelevant background elements that introduce noise. To address these challenges, we propose ConceptCoSOD, a novel concept-guided approach that leverages text semantic information to enhance Co-SOD performance by guiding the model to focus on consistent object features. Through rethinking Co-SOD as an (image-text)-to-image task instead of an image-to-image task, ConceptCoSOD first captures shared semantic concepts within an image group and then uses them as guidance for precise object segmentation in complex scenarios. Experimental results on three benchmark datasets and six corruptions reveal that ConceptCoSOD significantly improves detection accuracy, especially in challenging settings with considerable background distractions and object variability.
Related papers
- SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction [65.15449703659772]
Video Object (VOS) is a core task in computer vision, requiring models to track and segment target objects across video frames.<n>We propose Segment Concept (SeC), a concept-driven segmentation framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations.<n>SeC achieves an 11.8-point improvement over SAM SeCVOS, establishing a new state-of-the-art concept-aware video object segmentation.
arXiv Detail & Related papers (2025-07-21T17:59:02Z) - Interpretable Few-Shot Image Classification via Prototypical Concept-Guided Mixture of LoRA Experts [79.18608192761512]
Self-Explainable Models (SEMs) rely on Prototypical Concept Learning (PCL) to enable their visual recognition processes more interpretable.<n>We propose a Few-Shot Prototypical Concept Classification framework that mitigates two key challenges under low-data regimes: parametric imbalance and representation misalignment.<n>Our approach consistently outperforms existing SEMs by a notable margin, with 4.2%-8.7% relative gains in 5-way 5-shot classification.
arXiv Detail & Related papers (2025-06-05T06:39:43Z) - Object Centric Concept Bottlenecks [22.074896812195437]
We introduce Object-Centric Concept Bottlenecks (OCB), a framework that combines the strengths of CBMs and pre-trained object-centric foundation models.<n>We evaluate OCB on complex image datasets and conduct a comprehensive ablation study to analyze key components of the framework.<n>The results show that OCB outperforms traditional CBMs and allows one to make interpretable decisions for complex visual tasks.
arXiv Detail & Related papers (2025-05-30T11:45:05Z) - "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.<n>Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
We propose a novel framework that aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.<n>The core idea is to map users and items into discrete codes rich in collaborative information for reliable and informative contrastive view generation.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
This work targets ante hoc interpretability, and specifically Concept Bottleneck Models (CBMs)
Our goal is to design a framework that admits a highly interpretable decision making process with respect to human understandable concepts, on two levels of granularity.
Within this framework, concept information does not solely rely on the similarity between the whole image and general unstructured concepts; instead, we introduce the notion of concept hierarchy to uncover and exploit more granular concept information residing in patch-specific regions of the image scene.
arXiv Detail & Related papers (2023-10-03T14:57:31Z) - Concept Bottleneck with Visual Concept Filtering for Explainable Medical
Image Classification [16.849592713393896]
Concept Bottleneck Models (CBMs) enable interpretable image classification by utilizing human-understandable concepts as intermediate targets.
We propose a visual activation score that measures whether the concept contains visual cues or not.
Computed visual activation scores are then used to filter out the less visible concepts, thus resulting in a final concept set with visually meaningful concepts.
arXiv Detail & Related papers (2023-08-23T05:04:01Z) - ACSeg: Adaptive Conceptualization for Unsupervised Semantic Segmentation [17.019848796027485]
Self-supervised visual pre-training models have shown great promise in representing pixel-level semantic relationships.
In this work, we investigate the pixel-level semantic aggregation in self-trained models as image encodes and design concepts.
We propose the Adaptive Concept Generator (ACG) which adaptively maps these prototypes to informative concepts for each image.
arXiv Detail & Related papers (2022-10-12T06:16:34Z) - CoSformer: Detecting Co-Salient Object with Transformers [2.3148470932285665]
Co-Salient Object Detection (CoSOD) aims at simulating the human visual system to discover the common and salient objects from a group of relevant images.
We propose the Co-Salient Object Detection Transformer (CoSformer) network to capture both salient and common visual patterns from multiple images.
arXiv Detail & Related papers (2021-04-30T02:39:12Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
We introduce the concept of semantic objectness to exploit the geometric relationship of these two tasks.
We then propose a Semantic Object and Depth Estimation Network (SOSD-Net) based on the objectness assumption.
To the best of our knowledge, SOSD-Net is the first network that exploits the geometry constraint for simultaneous monocular depth estimation and semantic segmentation.
arXiv Detail & Related papers (2021-01-19T02:41:03Z) - CoADNet: Collaborative Aggregation-and-Distribution Networks for
Co-Salient Object Detection [91.91911418421086]
Co-Salient Object Detection (CoSOD) aims at discovering salient objects that repeatedly appear in a given query group containing two or more relevant images.
One challenging issue is how to effectively capture co-saliency cues by modeling and exploiting inter-image relationships.
We present an end-to-end collaborative aggregation-and-distribution network (CoADNet) to capture both salient and repetitive visual patterns from multiple images.
arXiv Detail & Related papers (2020-11-10T04:28:11Z) - Tasks Integrated Networks: Joint Detection and Retrieval for Image
Search [99.49021025124405]
In many real-world searching scenarios (e.g., video surveillance), the objects are seldom accurately detected or annotated.
We first introduce an end-to-end Integrated Net (I-Net), which has three merits.
We further propose an improved I-Net, called DC-I-Net, which makes two new contributions.
arXiv Detail & Related papers (2020-09-03T03:57:50Z) - Re-thinking Co-Salient Object Detection [170.44471050548827]
Co-salient object detection (CoSOD) aims to detect the co-occurring salient objects in a group of images.
Existing CoSOD datasets often have a serious data bias, assuming that each group of images contains salient objects of similar visual appearances.
We introduce a new benchmark, called CoSOD3k in the wild, which requires a large amount of semantic context.
arXiv Detail & Related papers (2020-07-07T12:20:51Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
We develop a layout-to-image-generation method to generate complex scenes with multiple objects.
Our method learns representations of the spatial relationships between objects in the scene, which lead to our model's improved layout-fidelity.
We introduce SceneFID, an object-centric adaptation of the popular Fr'echet Inception Distance metric, that is better suited for multi-object images.
arXiv Detail & Related papers (2020-03-16T21:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.