POEX: Understanding and Mitigating Policy Executable Jailbreak Attacks against Embodied AI
- URL: http://arxiv.org/abs/2412.16633v2
- Date: Mon, 10 Feb 2025 08:13:17 GMT
- Title: POEX: Understanding and Mitigating Policy Executable Jailbreak Attacks against Embodied AI
- Authors: Xuancun Lu, Zhengxian Huang, Xinfeng Li, Xiaoyu ji, Wenyuan Xu,
- Abstract summary: Embodied AI systems are rapidly evolving due to the integration of LLMs as planning modules, which transform complex instructions into executable policies.
This paper investigates the feasibility and rationale behind applying traditional LLM jailbreak attacks to EAI systems.
- Score: 10.87920459386508
- License:
- Abstract: Embodied AI systems are rapidly evolving due to the integration of LLMs as planning modules, which transform complex instructions into executable policies. However, LLMs are vulnerable to jailbreak attacks, which can generate malicious content. This paper investigates the feasibility and rationale behind applying traditional LLM jailbreak attacks to EAI systems. We aim to answer three questions: (1) Do traditional LLM jailbreak attacks apply to EAI systems? (2) What challenges arise if they do not? and (3) How can we defend against EAI jailbreak attacks? To this end, we first measure existing LLM-based EAI systems using a newly constructed dataset, i.e., the Harmful-RLbench. Our study confirms that traditional LLM jailbreak attacks are not directly applicable to EAI systems and identifies two unique challenges. First, the harmful text does not necessarily constitute harmful policies. Second, even if harmful policies can be generated, they are not necessarily executable by the EAI systems, which limits the potential risk. To facilitate a more comprehensive security analysis, we refine and introduce POEX, a novel red teaming framework that optimizes adversarial suffixes to induce harmful yet executable policies against EAI systems. The design of POEX employs adversarial constraints, policy evaluators, and suffix optimization to ensure successful policy execution while evading safety detection inside an EAI system. Experiments on the real-world robotic arm and simulator using Harmful-RLbench demonstrate the efficacy, highlighting severe safety vulnerabilities and high transferability across models. Finally, we propose prompt-based and model-based defenses, achieving an 85% success rate in mitigating attacks and enhancing safety awareness in EAI systems. Our findings underscore the urgent need for robust security measures to ensure the safe deployment of EAI in critical applications.
Related papers
- Exploiting Prefix-Tree in Structured Output Interfaces for Enhancing Jailbreak Attacking [34.479355499938116]
Large Language Models (LLMs) have led to significant applications but also introduced serious security threats.
We introduce a black-box attack framework called AttackPrefixTree (APT)
APT exploits structured output interfaces to dynamically construct attack patterns.
Experiments on benchmark datasets indicate that this approach achieves higher attack success rate than existing methods.
arXiv Detail & Related papers (2025-02-19T08:29:36Z) - LLM-Virus: Evolutionary Jailbreak Attack on Large Language Models [59.29840790102413]
Existing jailbreak attacks are primarily based on opaque optimization techniques and gradient search methods.
We propose LLM-Virus, a jailbreak attack method based on evolutionary algorithm, termed evolutionary jailbreak.
Our results show that LLM-Virus achieves competitive or even superior performance compared to existing attack methods.
arXiv Detail & Related papers (2024-12-28T07:48:57Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - h4rm3l: A Dynamic Benchmark of Composable Jailbreak Attacks for LLM Safety Assessment [48.5611060845958]
We propose a novel benchmark of composable jailbreak attacks to move beyond static datasets and of attacks and harms.
We use h4rm3l to generate a dataset of 2656 successful novel jailbreak attacks targeting 6 state-of-the-art (SOTA) open-source and proprietary LLMs.
Several of our synthesized attacks are more effective than previously reported ones, with Attack Success rates exceeding 90% on SOTA closed language models.
arXiv Detail & Related papers (2024-08-09T01:45:39Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [21.02295266675853]
Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization.
We propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content.
arXiv Detail & Related papers (2024-07-23T06:14:41Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
Large Language Models (LLMs) have shown significant promise in real-world decision-making tasks for embodied AI.
LLMs are fine-tuned to leverage their inherent common sense and reasoning abilities while being tailored to specific applications.
This fine-tuning process introduces considerable safety and security vulnerabilities, especially in safety-critical cyber-physical systems.
arXiv Detail & Related papers (2024-05-27T17:59:43Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - Analyzing the Inherent Response Tendency of LLMs: Real-World
Instructions-Driven Jailbreak [26.741029482196534]
"Jailbreak Attack" is phenomenon where Large Language Models (LLMs) generate harmful responses when faced with malicious instructions.
We introduce a novel automatic jailbreak method RADIAL, which bypasses the security mechanism by amplifying the potential of LLMs to generate affirmation responses.
Our method achieves excellent attack performance on English malicious instructions with five open-source advanced LLMs while maintaining robust attack performance in executing cross-language attacks against Chinese malicious instructions.
arXiv Detail & Related papers (2023-12-07T08:29:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.