論文の概要: Divide and Conquer: Grounding a Bleeding Areas in Gastrointestinal Image with Two-Stage Model
- arxiv url: http://arxiv.org/abs/2412.16723v1
- Date: Sat, 21 Dec 2024 18:18:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:36.065571
- Title: Divide and Conquer: Grounding a Bleeding Areas in Gastrointestinal Image with Two-Stage Model
- Title(参考訳): 分別とコンカー:2段階モデルによる消化器画像の出血領域の接地
- Authors: Yu-Fan Lin, Bo-Cheng Qiu, Chia-Ming Lee, Chih-Chung Hsu,
- Abstract要約: 本研究では,従来のマルチタスク学習モデルが生み出す課題に対処するために,分類と接地を分離する2段階の枠組みを提案する。
実験結果から,分類精度とセグメンテーション精度が有意に向上した。
- 参考スコア(独自算出の注目度): 7.1083241462091165
- License:
- Abstract: Accurate detection and segmentation of gastrointestinal bleeding are critical for diagnosing diseases such as peptic ulcers and colorectal cancer. This study proposes a two-stage framework that decouples classification and grounding to address the inherent challenges posed by traditional Multi-Task Learning models, which jointly optimizes classification and segmentation. Our approach separates these tasks to achieve targeted optimization for each. The model first classifies images as bleeding or non-bleeding, thereby isolating subsequent grounding from inter-task interference and label heterogeneity. To further enhance performance, we incorporate Stochastic Weight Averaging and Test-Time Augmentation, which improve model robustness against domain shifts and annotation inconsistencies. Our method is validated on the Auto-WCEBleedGen Challenge V2 Challenge dataset and achieving second place. Experimental results demonstrate significant improvements in classification accuracy and segmentation precision, especially on sequential datasets with consistent visual patterns. This study highlights the practical benefits of a two-stage strategy for medical image analysis and sets a new standard for GI bleeding detection and segmentation. Our code is publicly available at this GitHub repository.
- Abstract(参考訳): 消化器出血の正確な検出とセグメンテーションは、消化性潰瘍や大腸癌などの疾患の診断に重要である。
本研究では,従来のマルチタスク学習モデルがもたらす課題に対処するために,分類とグラウンドを分離する2段階のフレームワークを提案する。
当社のアプローチでは、それぞれの目標最適化を達成するためにこれらのタスクを分離しています。
このモデルはまず、画像を出血または非出血と分類し、これにより、タスク間干渉およびラベルの不均一性からその後の接地を分離する。
パフォーマンスをさらに向上するため、Stochastic Weight AveragingとTest-Time Augmentationを導入し、ドメインシフトやアノテーションの不整合に対するモデルロバスト性を改善する。
本手法は,Auto-WCEBleedGen Challenge V2 Challengeデータセットで検証し,第2位を獲得した。
実験結果から,分類精度とセグメンテーション精度,特に一貫した視覚パターンを持つ逐次データセットにおいて有意な改善が得られた。
本研究は、医用画像解析のための2段階戦略の実用的メリットを強調し、GI出血の検出とセグメンテーションのための新しい標準を設定した。
私たちのコードは、このGitHubリポジトリで公開されています。
関連論文リスト
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
半教師付き医用画像分割は、大規模医用画像解析に有望な解決策を提供する。
本稿では、二重分類器(DC-Net)に基づくクロス教師あり学習フレームワークを提案する。
LAとPancreas-CTデータセットの実験は、DC-Netが半教師付きセグメンテーションの他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-25T16:23:39Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
医用胸部X線画像のセマンティックセグメンテーションに対する新しいアプローチを提案する。
本手法は肺と胸壁の間の異常な空気量を検出するための胸部X線検査に適用可能である。
論文 参考訳(メタデータ) (2020-07-01T20:48:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。