Fundamental thresholds for computational and erasure errors via the coherent information
- URL: http://arxiv.org/abs/2412.16727v1
- Date: Sat, 21 Dec 2024 18:30:30 GMT
- Title: Fundamental thresholds for computational and erasure errors via the coherent information
- Authors: Luis Colmenarez, Seyong Kim, Markus Müller,
- Abstract summary: We propose a framework based on the coherent information (CI) of the mixed-state density operator associated to noisy QEC codes.
We show how to rigorously derive different families of statistical mechanics mappings for generic stabilizer QEC codes in the presence of both types of errors.
- Score: 1.4767596539913115
- License:
- Abstract: Quantum error correcting (QEC) codes protect quantum information against environmental noise. Computational errors caused by the environment change the quantum state within the qubit subspace, whereas quantum erasures correspond to the loss of qubits at known positions. Correcting either type of error involves different correction mechanisms, which makes studying the interplay between erasure and computational errors particularly challenging. In this work, we propose a framework based on the coherent information (CI) of the mixed-state density operator associated to noisy QEC codes, for treating both types of errors together. We show how to rigorously derive different families of statistical mechanics mappings for generic stabilizer QEC codes in the presence of both types of errors. We observe that the erasure errors enter as a classical average over fully depolarizing channels. Further, we show that computing the CI for erasure errors only can be done efficiently upon sampling over erasure configurations. We then test our approach on the 2D toric and color codes and compute optimal thresholds for erasure errors only, finding a $50\%$ threshold for both codes. This strengthens the notion that both codes share the same optimal thresholds. When considering both computational and erasure errors, the CI of small-size codes yields thresholds in very accurate agreement with established results that have been obtained in the thermodynamic limit. We thereby further establish the CI as a practical tool for studying optimal thresholds under realistic noise and as a means for uncovering new relations between QEC codes and statistical physics models.
Related papers
- The surface code under generic $X$-error channels: Statistical mechanics, error thresholds, and errorfield double phenomenology [0.0]
We study the code under the most general single-qubit $X$-error channel, encompassing both coherent and incoherent errors.
We compute maximum-likelihood thresholds and show that error coherence has negligible influence away from the fully coherent limit.
arXiv Detail & Related papers (2024-12-30T16:14:55Z) - Extracting Error Thresholds through the Framework of Approximate Quantum Error Correction Condition [0.0]
robustness of quantum memory against physical noises is measured by two methods.
exact and approximate quantum error correction (QEC) conditions for error recoverability.
decoder-dependent error threshold which assesses if the logical error rate diminishes with system size.
arXiv Detail & Related papers (2023-12-28T12:37:49Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Accurate optimal quantum error correction thresholds from coherent information [1.351813974961217]
We use the coherent information of the mixed state of noisy QEC codes to accurately estimate the associated optimal QEC thresholds.
Our findings establish the coherent information as a reliable competitive practical tool for the calculation of optimal thresholds of state-of-the-art QEC codes.
arXiv Detail & Related papers (2023-12-11T18:59:58Z) - DGR: Tackling Drifted and Correlated Noise in Quantum Error Correction via Decoding Graph Re-weighting [14.817445452647588]
We propose an efficient decoding graph edge re-weighting strategy with no quantum overhead.
DGR reduces the logical error rate by 3.6x on average-case noise mismatch with exceeding 5000x improvement under worst-case mismatch.
arXiv Detail & Related papers (2023-11-27T18:26:16Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Efficient Simulation of Leakage Errors in Quantum Error Correcting Codes Using Tensor Network Methods [0.196629787330046]
We present a computationally efficient simulation methodology for studying leakage errors in quantum error correcting codes (QECCs)
Our approach enables the simulation of various leakage processes, including thermal noise and coherent errors, without approximations.
By leveraging the small amount of entanglement generated during the error correction process, we are able to study large systems, up to a few hundred qudits, over many code cycles.
arXiv Detail & Related papers (2023-08-16T07:36:33Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.