LUCES-MV: A Multi-View Dataset for Near-Field Point Light Source Photometric Stereo
- URL: http://arxiv.org/abs/2412.16737v1
- Date: Sat, 21 Dec 2024 18:58:16 GMT
- Title: LUCES-MV: A Multi-View Dataset for Near-Field Point Light Source Photometric Stereo
- Authors: Fotios Logothetis, Ignas Budvytis, Stephan Liwicki, Roberto Cipolla,
- Abstract summary: We propose LUCES-MV, the first real-world, multi-view dataset designed for near-field point light source photometric stereo.
Our dataset includes 15 objects with diverse materials, each imaged under varying light conditions from an array of 15 LEDs positioned 30 to 40 centimeters from the camera center.
We evaluate state-of-the-art near-field photometric stereo algorithms, highlighting their strengths and limitations across different material and shape complexities.
- Score: 31.457168417257943
- License:
- Abstract: The biggest improvements in Photometric Stereo (PS) field has recently come from adoption of differentiable volumetric rendering techniques such as NeRF or Neural SDF achieving impressive reconstruction error of 0.2mm on DiLiGenT-MV benchmark. However, while there are sizeable datasets for environment lit objects such as Digital Twin Catalogue (DTS), there are only several small Photometric Stereo datasets which often lack challenging objects (simple, smooth, untextured) and practical, small form factor (near-field) light setup. To address this, we propose LUCES-MV, the first real-world, multi-view dataset designed for near-field point light source photometric stereo. Our dataset includes 15 objects with diverse materials, each imaged under varying light conditions from an array of 15 LEDs positioned 30 to 40 centimeters from the camera center. To facilitate transparent end-to-end evaluation, our dataset provides not only ground truth normals and ground truth object meshes and poses but also light and camera calibration images. We evaluate state-of-the-art near-field photometric stereo algorithms, highlighting their strengths and limitations across different material and shape complexities. LUCES-MV dataset offers an important benchmark for developing more robust, accurate and scalable real-world Photometric Stereo based 3D reconstruction methods.
Related papers
- IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.
Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.
We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - RMAFF-PSN: A Residual Multi-Scale Attention Feature Fusion Photometric Stereo Network [37.759675702107586]
Predicting accurate maps of objects from two-dimensional images in regions of complex structure spatial material variations is challenging.
We propose a method of calibrated feature information from different resolution stages and scales of the image.
This approach preserves more physical information, such as texture and geometry of the object in complex regions.
arXiv Detail & Related papers (2024-04-11T14:05:37Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues.
Deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces.
arXiv Detail & Related papers (2022-12-16T11:27:44Z) - Multi-sensor large-scale dataset for multi-view 3D reconstruction [63.59401680137808]
We present a new multi-sensor dataset for multi-view 3D surface reconstruction.
It includes registered RGB and depth data from sensors of different resolutions and modalities: smartphones, Intel RealSense, Microsoft Kinect, industrial cameras, and structured-light scanner.
We provide around 1.4 million images of 107 different scenes acquired from 100 viewing directions under 14 lighting conditions.
arXiv Detail & Related papers (2022-03-11T17:32:27Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - LUCES: A Dataset for Near-Field Point Light Source Photometric Stereo [30.31403197697561]
We introduce LUCES, the first real-world 'dataset for near-fieLd point light soUrCe photomEtric Stereo' of 14 objects of a varying of materials.
A device counting 52 LEDs has been designed to lit each object positioned 10 to 30 centimeters away from the camera.
We evaluate the performance of the latest near-field Photometric Stereo algorithms on the proposed dataset.
arXiv Detail & Related papers (2021-04-27T12:30:42Z) - Learning Efficient Photometric Feature Transform for Multi-view Stereo [37.26574529243778]
We learn to convert the perpixel photometric information at each view into spatially distinctive and view-invariant low-level features.
Our framework automatically adapts to and makes efficient use of the geometric information available in different forms of input data.
arXiv Detail & Related papers (2021-03-27T02:53:15Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo technique.
Our algorithm is suitable for perspective cameras and nearby point light sources.
arXiv Detail & Related papers (2020-01-18T12:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.