論文の概要: Forget Vectors at Play: Universal Input Perturbations Driving Machine Unlearning in Image Classification
- arxiv url: http://arxiv.org/abs/2412.16780v1
- Date: Sat, 21 Dec 2024 21:27:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:53:19.460633
- Title: Forget Vectors at Play: Universal Input Perturbations Driving Machine Unlearning in Image Classification
- Title(参考訳): Forget Vectors at Play:Universal Input Perturbations Driving Machine Unlearning in Image Classification
- Authors: Changchang Sun, Ren Wang, Yihua Zhang, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Sijia Liu, Yan Yan,
- Abstract要約: マシン・アンラーニング(MU)は、既に訓練されたモデルから不要な特定のデータの影響を消そうとする。
本研究では,新しい入力ベースの観点からMU問題にアプローチする。
我々は,能動的入力に基づく非学習戦略の存在を実演する。
- 参考スコア(独自算出の注目度): 25.721619048573203
- License:
- Abstract: Machine unlearning (MU), which seeks to erase the influence of specific unwanted data from already-trained models, is becoming increasingly vital in model editing, particularly to comply with evolving data regulations like the ``right to be forgotten''. Conventional approaches are predominantly model-based, typically requiring retraining or fine-tuning the model's weights to meet unlearning requirements. In this work, we approach the MU problem from a novel input perturbation-based perspective, where the model weights remain intact throughout the unlearning process. We demonstrate the existence of a proactive input-based unlearning strategy, referred to forget vector, which can be generated as an input-agnostic data perturbation and remains as effective as model-based approximate unlearning approaches. We also explore forget vector arithmetic, whereby multiple class-specific forget vectors are combined through simple operations (e.g., linear combinations) to generate new forget vectors for unseen unlearning tasks, such as forgetting arbitrary subsets across classes. Extensive experiments validate the effectiveness and adaptability of the forget vector, showcasing its competitive performance relative to state-of-the-art model-based methods. Codes are available at https://github.com/Changchangsun/Forget-Vector.
- Abstract(参考訳): すでに訓練されているモデルから不要な特定のデータの影響を消そうとする機械学習(MU)は、モデル編集において、特に ''right to be forget''のような進化するデータ規則に従うために、ますます重要になっている。
従来のアプローチは主にモデルベースであり、通常、未学習の要件を満たすためにモデルの重みをトレーニングしたり微調整する必要がある。
本研究では,新しい入力摂動に基づく視点からMU問題にアプローチする。
我々は,入力に依存しないデータ摂動として生成され,モデルに基づく近似的非学習手法と同じくらい有効である,能動的入力に基づく非学習戦略の存在を実証する。
また、複数のクラス固有の忘れベクトルを単純な演算(例えば線形結合)で組み合わせて、クラス間の任意の部分集合を忘れるといった未学習タスクのための新しい忘れベクトルを生成するという、忘れベクトルの算術についても検討する。
包括的実験は、最先端のモデルに基づく手法と比較して、その競合性能を示す、忘れベクトルの有効性と適応性を検証する。
コードはhttps://github.com/Changchangsun/Forget-Vector.comで入手できる。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - NegMerge: Consensual Weight Negation for Strong Machine Unlearning [21.081262106431506]
機械学習は、モデルから特定の知識を選択的に除去することを目的としている。
現在の手法は、左折セットの微調整モデルに依存し、タスクベクトルを生成し、元のモデルからそれを減算する。
1つのモデルを選択するのではなく、与えられた細調整されたモデルをすべて活用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-08T00:50:54Z) - Efficient and Generalizable Certified Unlearning: A Hessian-free Recollection Approach [8.875278412741695]
機械学習は、特定のデータを選択的に忘れることを可能にして、データ所有者の権利を忘れないように努力する。
我々は,ベクトル加算操作のみを必要とするため,ほぼ瞬時に未学習を実現するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-04-02T07:54:18Z) - Loss-Free Machine Unlearning [51.34904967046097]
我々は、再学習とラベルなしの両方の機械学習アプローチを提案する。
Retraining-freeアプローチは、損失から派生したFisher情報を利用することが多く、利用できないラベル付きデータを必要とする。
本稿では,モデル出力のl2ノルムの勾配に対して,フィッシャー情報行列の対角線を近似感度に置き換えるSelective Synaptic Dampeningアルゴリズムの拡張を提案する。
論文 参考訳(メタデータ) (2024-02-29T16:15:34Z) - An Information Theoretic Approach to Machine Unlearning [43.423418819707784]
AIやデータ規則に従うためには、トレーニングされた機械学習モデルからプライベートまたは著作権のある情報を忘れる必要性がますます高まっている。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。