KG4Diagnosis: A Hierarchical Multi-Agent LLM Framework with Knowledge Graph Enhancement for Medical Diagnosis
- URL: http://arxiv.org/abs/2412.16833v4
- Date: Fri, 28 Mar 2025 23:31:57 GMT
- Title: KG4Diagnosis: A Hierarchical Multi-Agent LLM Framework with Knowledge Graph Enhancement for Medical Diagnosis
- Authors: Kaiwen Zuo, Yirui Jiang, Fan Mo, Pietro Lio,
- Abstract summary: KG4Diagnosis is a novel hierarchical multi-agent framework that combines Large Language Models with automated knowledge graph construction.<n>Our framework mirrors real-world medical systems through a two-tier architecture: a general practitioner (GP) agent for initial assessment and triage, coordinating with specialized agents for in-depth diagnosis in specific domains.
- Score: 6.001401133840334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating Large Language Models (LLMs) in healthcare diagnosis demands systematic frameworks that can handle complex medical scenarios while maintaining specialized expertise. We present KG4Diagnosis, a novel hierarchical multi-agent framework that combines LLMs with automated knowledge graph construction, encompassing 362 common diseases across medical specialties. Our framework mirrors real-world medical systems through a two-tier architecture: a general practitioner (GP) agent for initial assessment and triage, coordinating with specialized agents for in-depth diagnosis in specific domains. The core innovation lies in our end-to-end knowledge graph generation methodology, incorporating: (1) semantic-driven entity and relation extraction optimized for medical terminology, (2) multi-dimensional decision relationship reconstruction from unstructured medical texts, and (3) human-guided reasoning for knowledge expansion. KG4Diagnosis serves as an extensible foundation for specialized medical diagnosis systems, with capabilities to incorporate new diseases and medical knowledge. The framework's modular design enables seamless integration of domain-specific enhancements, making it valuable for developing targeted medical diagnosis systems. We provide architectural guidelines and protocols to facilitate adoption across medical contexts.
Related papers
- Learning to Be A Doctor: Searching for Effective Medical Agent Architectures [32.82784216021035]
This paper introduces a novel framework for the automated design of medical agent architectures.
Motivated by the success of automated machine learning (AutoML), we define a hierarchical and expressive agent search space.
Our framework conceptualizes medical agents as graph-based architectures composed of diverse, functional node types.
arXiv Detail & Related papers (2025-04-15T15:44:21Z) - MedCoT: Medical Chain of Thought via Hierarchical Expert [48.91966620985221]
This paper presents MedCoT, a novel hierarchical expert verification reasoning chain method.
It is designed to enhance interpretability and accuracy in biomedical imaging inquiries.
Experimental evaluations on four standard Med-VQA datasets demonstrate that MedCoT surpasses existing state-of-the-art approaches.
arXiv Detail & Related papers (2024-12-18T11:14:02Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - medIKAL: Integrating Knowledge Graphs as Assistants of LLMs for Enhanced Clinical Diagnosis on EMRs [13.806201934732321]
medIKAL combines Large Language Models (LLMs) with knowledge graphs (KGs) to enhance diagnostic capabilities.
medIKAL assigns weighted importance to entities in medical records based on their type, enabling precise localization of candidate diseases within KGs.
We validated medIKAL's effectiveness through extensive experiments on a newly introduced open-sourced Chinese EMR dataset.
arXiv Detail & Related papers (2024-06-20T13:56:52Z) - COGNET-MD, an evaluation framework and dataset for Large Language Model benchmarks in the medical domain [1.6752458252726457]
Large Language Models (LLMs) constitute a breakthrough state-of-the-art Artificial Intelligence (AI) technology.
We outline Cognitive Network Evaluation Toolkit for Medical Domains (COGNET-MD)
We propose a scoring-framework with increased difficulty to assess the ability of LLMs in interpreting medical text.
arXiv Detail & Related papers (2024-05-17T16:31:56Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models [57.88111980149541]
We introduce Asclepius, a novel Med-MLLM benchmark that assesses Med-MLLMs in terms of distinct medical specialties and different diagnostic capacities.<n>Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties.<n>We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
Existing models often lack the medical context relevent to clinical tasks, prompting the incorporation of external knowledge.
We propose REALM, a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR representations.
Our experiments on MIMIC-III mortality and readmission tasks showcase the superior performance of our REALM framework over baselines.
arXiv Detail & Related papers (2024-02-10T18:27:28Z) - Large-scale Long-tailed Disease Diagnosis on Radiology Images [51.453990034460304]
RadDiag is a foundational model supporting 2D and 3D inputs across various modalities and anatomies.
Our dataset, RP3D-DiagDS, contains 40,936 cases with 195,010 scans covering 5,568 disorders.
arXiv Detail & Related papers (2023-12-26T18:20:48Z) - Leveraging Medical Knowledge Graphs Into Large Language Models for Diagnosis Prediction: Design and Application Study [6.10474409373543]
We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.
We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.
Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
arXiv Detail & Related papers (2023-08-28T06:05:18Z) - OpenClinicalAI: An Open and Dynamic Model for Alzheimer's Disease
Diagnosis [11.775648630734949]
Alzheimer's disease (AD) cannot be reversed or cured, but timely diagnosis can significantly reduce the burden of treatment and care.
Current research on AD diagnosis models usually regards the diagnosis task as a typical classification task.
We propose OpenClinicalAI for direct AD diagnosis in complex and uncertain clinical settings.
arXiv Detail & Related papers (2023-07-03T12:35:03Z) - ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs [48.11532667875847]
ChatCAD+ is a tool to generate high-quality medical reports and provide reliable medical advice.
The Reliable Report Generation module is capable of interpreting medical images and generate high-quality medical reports.
The Reliable Interaction module leverages up-to-date information from reputable medical websites to provide reliable medical advice.
arXiv Detail & Related papers (2023-05-25T12:03:31Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.